146 research outputs found
The automorphism group of separable states in quantum information theory
We show that the linear group of automorphism of Hermitian matrices which
preserves the set of separable states is generated by \emph{natural}
automorphisms: change of an orthonormal basis in each tensor factor, partial
transpose in each tensor factor, and interchanging two tensor factors of the
same dimension. We apply our results to preservers of the product numerical
range.Comment: 15 page
A note on the realignment criterion
For a quantum state in a bipartite system represented as a density matrix,
researchers used the realignment matrix and functions on its singular values to
study the separability of the quantum state. We obtain bounds for elementary
symmetric functions of singular values of realignment matrices. This answers
some open problems proposed by Lupo, Aniello, and Scardicchio. As a
consequence, we show that the proposed scheme by these authors for testing
separability would not work if the two subsystems of the bipartite system have
the same dimension.Comment: 11 pages, to appear in Journal of Physics A: Mathematical and
Theoretica
Venus Express radio occultation observed by PRIDE
Context. Radio occultation is a technique used to study planetary atmospheres
by means of the refraction and absorption of a spacecraft carrier signal
through the atmosphere of the celestial body of interest, as detected from a
ground station on Earth. This technique is usually employed by the deep space
tracking and communication facilities (e.g., NASA's Deep Space Network (DSN),
ESA's Estrack). Aims. We want to characterize the capabilities of the Planetary
Radio Interferometry and Doppler Experiment (PRIDE) technique for radio
occultation experiments, using radio telescopes equipped with Very Long
Baseline Interferometry (VLBI) instrumentation. Methods. We conducted a test
with ESA's Venus Express (VEX), to evaluate the performance of the PRIDE
technique for this particular application. We explain in detail the data
processing pipeline of radio occultation experiments with PRIDE, based on the
collection of so-called open-loop Doppler data with VLBI stations, and perform
an error propagation analysis of the technique. Results. With the VEX test case
and the corresponding error analysis, we have demonstrated that the PRIDE setup
and processing pipeline is suited for radio occultation experiments of
planetary bodies. The noise budget of the open-loop Doppler data collected with
PRIDE indicated that the uncertainties in the derived density and temperature
profiles remain within the range of uncertainties reported in previous Venus'
studies. Open-loop Doppler data can probe deeper layers of thick atmospheres,
such as that of Venus, when compared to closed-loop Doppler data. Furthermore,
PRIDE through the VLBI networks around the world, provides a wide coverage and
range of large antenna dishes, that can be used for this type of experiments
Observability and nonlinear filtering
This paper develops a connection between the asymptotic stability of
nonlinear filters and a notion of observability. We consider a general class of
hidden Markov models in continuous time with compact signal state space, and
call such a model observable if no two initial measures of the signal process
give rise to the same law of the observation process. We demonstrate that
observability implies stability of the filter, i.e., the filtered estimates
become insensitive to the initial measure at large times. For the special case
where the signal is a finite-state Markov process and the observations are of
the white noise type, a complete (necessary and sufficient) characterization of
filter stability is obtained in terms of a slightly weaker detectability
condition. In addition to observability, the role of controllability in filter
stability is explored. Finally, the results are partially extended to
non-compact signal state spaces
Many body physics from a quantum information perspective
The quantum information approach to many body physics has been very
successful in giving new insight and novel numerical methods. In these lecture
notes we take a vertical view of the subject, starting from general concepts
and at each step delving into applications or consequences of a particular
topic. We first review some general quantum information concepts like
entanglement and entanglement measures, which leads us to entanglement area
laws. We then continue with one of the most famous examples of area-law abiding
states: matrix product states, and tensor product states in general. Of these,
we choose one example (classical superposition states) to introduce recent
developments on a novel quantum many body approach: quantum kinetic Ising
models. We conclude with a brief outlook of the field.Comment: Lectures from the Les Houches School on "Modern theories of
correlated electron systems". Improved version new references adde
Entanglement thresholds for random induced states
For a random quantum state on obtained by partial tracing
a random pure state on , we consider the whether it is typically
separable or typically entangled. For this problem, we show the existence of a
sharp threshold of order roughly . More precisely, for any and for d large enough, such a random state is entangled with very large
probability when , and separable with very large probability when
. One consequence of this result is as follows: for a system of N
identical particles in a random pure state, there is a threshold such that two subsystems of k particles each typically share
entanglement if , and typically do not share entanglement if . Our methods work also for multipartite systems and for "unbalanced"
systems such as , . The arguments rely on
random matrices, classical convexity, high-dimensional probability and geometry
of Banach spaces; some of the auxiliary results may be of reference value. A
high-level non-technical overview of the results of this paper and of a related
article arXiv:1011.0275 can be found in arXiv:1112.4582.Comment: 34 pages; v.3: reorganized proof, new results only in section 7.1,
references added; v.2: main result strengthened (much stronger threshold
property) allowing the sharp "N-particle" interpretation of the results
stated in the abstract, new appendix on majorization and \infty-Wasserstein
distance, references adde
Ultra-Low-Frequency Radio Astronomy Observations from a Selenocentric Orbit: first results of the Longjiang-2 experiment
This paper introduces the first results of observations with the
Ultra-Long-Wavelength (ULW) -- Low Frequency Interferometer and Spectrometer
(LFIS) on board the selenocentric satellite Longjiang-2. We present a brief
description of the satellite and focus on the LFIS payload. The in-orbit
commissioning confirmed a reliable operational status of the instrumentation.
We also present results of a transition observation, which offers unique
measurements on several novel aspects. We estimate the RFI suppression required
for such a radio astronomy instrumentation at the Moon distances from Earth to
be of the order of 80 dB. We analyse a method of separating Earth- and
satellite-originated radio frequency interference (RFI). It is found that the
RFI level at frequencies lower than a few MHz is smaller than the receiver
noise floor.Comment: Accepted for publication in Experimental Astronomy; 22 pages, 11
figure
Towards a Metric for the Assessment of Safety Critical Control Systems
There is a need for better integration of the fault tolerant and the control designs for safety critical systems such as aircraft. The dependability of current designs is assessed primarily with measures of the interconnection of fault tolerant components: the reliability function and the mean time to failure. These measures do not directly take into account the interaction of the fault tolerant components with the dynamics of the aircraft. In this paper, a first step to better integrate these designs is made. It is based on the observation that unstable systems are intrinsically unreliable and that a necessary condition for reliability is the existence of a stabilizing control law that depends on the interconnection of the working fault tolerant components. Since operation of a fault tolerant interconnection of digital computers in a harsh environment can result in transient errors, a methodology to analyze the mean square stability of the fault tolerant closed-loop system is presented. A definition for mean square stabilizability is then used to introduce the new dynamical system reliability concept. An example illustrates the effect on mean square stability of several fault tolerant design choices and illustrates possible dynamical system reliability plot
Jupiter Science Enabled by ESA's Jupiter Icy Moons Explorer
ESA’s Jupiter Icy Moons Explorer (JUICE) will provide a detailed investigation of the Jovian system in the 2030s, combining a suite of state-of-the-art instruments with an orbital tour tailored to maximise observing opportunities. We review the Jupiter science enabled by the JUICE mission, building on the legacy of discoveries from the Galileo, Cassini, and Juno missions, alongside ground- and space-based observatories. We focus on remote sensing of the climate, meteorology, and chemistry of the atmosphere and auroras from the cloud-forming weather layer, through the upper troposphere, into the stratosphere and ionosphere. The Jupiter orbital tour provides a wealth of opportunities for atmospheric and auroral science: global perspectives with its near-equatorial and inclined phases, sampling all phase angles from dayside to nightside, and investigating phenomena evolving on timescales from minutes to months. The remote sensing payload spans far-UV spectroscopy (50-210 nm), visible imaging (340-1080 nm), visible/near-infrared spectroscopy (0.49-5.56 μm), and sub-millimetre sounding (near 530-625 GHz and 1067-1275 GHz). This is coupled to radio, stellar, and solar occultation opportunities to explore the atmosphere at high vertical resolution; and radio and plasma wave measurements of electric discharges in the Jovian atmosphere and auroras. Cross-disciplinary scientific investigations enable JUICE to explore coupling processes in giant planet atmospheres, to show how the atmosphere is connected to (i) the deep circulation and composition of the hydrogen-dominated interior; and (ii) to the currents and charged particle environments of the external magnetosphere. JUICE will provide a comprehensive characterisation of the atmosphere and auroras of this archetypal giant planet
- …
