1,838 research outputs found
Dust Emission from Evolved and Unevolved HII Regions in the Large Magellanic Cloud
We present a study of the dust properties of 12 classical and superbubble HII
regions in the Large Magellanic Cloud. We use infrared photometry from Spitzer
(8, 24, 70, and 160 \mum bands), obtained as part of the Surveying the Agents
of a Galaxy's Evolution (SAGE) program, along with archival spectroscopic
classifications of the ionizing stars to examine the role of stellar sources on
dust heating and processing. Our infrared observations show surprisingly little
correlation between the emission properties of the dust and the effective
temperatures or bolometric magnitudes of stars in the HII regions, suggesting
that the HII region evolutionary timescale is not on the order of the dust
processing timescale. We find that the infrared emission of superbubbles and
classical HII regions shows little differentiation between the two classes,
despite the significant differences in age and morphology. We do detect a
correlation of the 24 \mum emission from hot dust with the ratio of 70 to 160
\mum flux. This correlation can be modeled as a trend in the temperature of a
minority hot dust component, while a majority of the dust remains significantly
cooler.Comment: 15 pages, 5 figures. Accepted to Ap
The global dust SED: Tracing the nature and evolution of dust with DustEM
The Planck and Herschel missions are currently measuring the farIR-mm
emission of dust, which combined with existing IR data, will for the first time
provide the full SED of the galactic ISM dust emission with an unprecedented
sensitivity and angular resolution. It will allow a systematic study of the
dust evolution processes that affect the SED. Here we present a versatile
numerical tool, DustEM, that predicts the emission and extinction of dust given
their size distribution and their optical and thermal properties. In order to
model dust evolution, DustEM has been designed to deal with a variety of grain
types, structures and size distributions and to be able to easily include new
dust physics. We use DustEM to model the dust SED and extinction in the diffuse
interstellar medium at high-galactic latitude (DHGL), a natural reference SED.
We present a coherent set of observations for the DHGL SED. The dust components
in our DHGL model are (i) PAHs, (ii) amorphous carbon and (iii) amorphous
silicates. We use amorphous carbon dust, rather than graphite, because it
better explains the observed high abundances of gas-phase carbon in shocked
regions of the interstellar medium. Using the DustEM model, we illustrate how,
in the optically thin limit, the IRAS/Planck HFI (and likewise Spitzer/Herschel
for smaller spatial scales) photometric band ratios of the dust SED can
disentangle the influence of the exciting radiation field intensity and
constrain the abundance of small grains relative to the larger grains. We also
discuss the contributions of the different grain populations to the IRAS,
Planck and Herschel channels. Such information is required to enable a study of
the evolution of dust as well as to systematically extract the dust thermal
emission from CMB data and to analyze the emission in the Planck polarized
channels. The DustEM code described in this paper is publically available.Comment: accepted for publication in A&
Submillimeter to centimeter excess emission from the Magellanic Clouds. II. On the nature of the excess
Dust emission at submm to cm wavelengths is often simply the Rayleigh-Jeans
tail of dust particles at thermal equilibrium and is used as a cold mass tracer
in various environments including nearby galaxies. However, well-sampled
spectral energy distributions of the nearby, star-forming Magellanic Clouds
have a pronounced (sub-)millimeter excess (Israel et al., 2010). This study
attempts to confirm the existence of such a millimeter excess above expected
dust, free-free and synchrotron emission and to explore different possibilities
for its origin. We model NIR to radio spectral energy distributions of the
Magellanic Clouds with dust, free-free and synchrotron emission. A millimeter
excess emission is confirmed above these components and its spectral shape and
intensity are analysed in light of different scenarios: very cold dust, Cosmic
Microwave Background (CMB) fluctuations, a change of the dust spectral index
and spinning dust emission. We show that very cold dust or CMB fluctuations are
very unlikely explanations for the observed excess in these two galaxies. The
excess in the LMC can be satisfactorily explained either by a change of the
spectral index due to intrinsic properties of amorphous grains, or by spinning
dust emission. In the SMC however, due to the importance of the excess, the
dust grain model including TLS/DCD effects cannot reproduce the observed
emission in a simple way. A possible solution was achieved with spinning dust
emission, but many assumptions on the physical state of the interstellar medium
had to be made. Further studies, using higher resolution data from Planck and
Herschel, are needed to probe the origin of this observed submm-cm excess more
definitely. Our study shows that the different possible origins will be best
distinguished where the excess is the highest, as is the case in the SMC.Comment: 7 pages, 6 figures; accepted in A&
The Spatial Distribution of Dust and Stellar Emission of the Magellanic Clouds
We study the emission by dust and stars in the Large and Small Magellanic
Clouds, a pair of low-metallicity nearby galaxies, as traced by their spatially
resolved spectral energy distributions (SEDs). This project combines Herschel
Space Observatory PACS and SPIRE far-infrared photometry with other data at
infrared and optical wavelengths. We build maps of dust and stellar luminosity
and mass of both Magellanic Clouds, and analyze the spatial distribution of
dust/stellar luminosity and mass ratios. These ratios vary considerably
throughout the galaxies, generally between the range and .
We observe that the dust/stellar ratios depend on the interstellar medium (ISM)
environment, such as the distance from currently or previously star-forming
regions, and on the intensity of the interstellar radiation field (ISRF). In
addition, we construct star formation rate (SFR) maps, and find that the SFR is
correlated with the dust/stellar luminosity and dust temperature in both
galaxies, demonstrating the relation between star formation, dust emission and
heating, though these correlations exhibit substantial scatter.Comment: 15 pages, 18 figures; ApJ, in press; version published in the journal
will have higher-resolution figure
Shattering by turbulence as a production source of very small grains
The origin of grain size distribution in the interstellar medium is one of
the most fundamental problems in the interstellar physics. In the Milky Way,
smaller grains are more abundant in number, but their origins are not
necessarily specified and quantified. One of the most efficient drivers of
small grain production is interstellar turbulence, in which dust grains can
acquire relative velocities large enough to be shattered. Applying the
framework of shattering developed in previous papers, we show that small (a\la
0.01~\micron) grains reach the abundance level observed in the Milky Way in
yr (i.e. within the grain lifetime) by shattering in warm neutral
medium. We also show that if part of grains experience additional shattering in
warm ionized medium, carbonaceous grains with a\sim 0.01~\micron are
redistributed into smaller sizes. This could explain the relative enhancement
of very small carbonaceous grains with --100 \AA. Our theory also
explains the ubiquitous association between large grains and very small grains
naturally. Some tests for our theory are proposed in terms of the metallicity
dependence.Comment: 5 pages, 2 figures, accepted for publication in MNRAS Letter
Domestic chickens activate a piRNA defense against avian leukosis virus
PIWI-interacting RNAs (piRNAs) protect the germ line by targeting transposable elements (TEs) through the base-pair complementarity. We do not know how piRNAs co-evolve with TEs in chickens. Here we reported that all active TEs in the chicken germ line are targeted by piRNAs, and as TEs lose their activity, the corresponding piRNAs erode away. We observed de novo piRNA birth as host responds to a recent retroviral invasion. Avian leukosis virus (ALV) has endogenized prior to chicken domestication, remains infectious, and threatens poultry industry. Domestic fowl produce piRNAs targeting ALV from one ALV provirus that was known to render its host ALV resistant. This proviral locus does not produce piRNAs in undomesticated wild chickens. Our findings uncover rapid piRNA evolution reflecting contemporary TE activity, identify a new piRNA acquisition modality by activating a pre-existing genomic locus, and extend piRNA defense roles to include the period when endogenous retroviruses are still infectious. DOI: http://dx.doi.org/10.7554/eLife.24695.00
TSPO: kaleidoscopic 18-kDa amid biochemical pharmacology, control and targeting of mitochondria
The 18-kDa translocator protein (TSPO) localizes in the outer mitochondrial membrane (OMM) of cells and is readily up-regulated under various pathological conditions such as cancer, inflammation, mechanical lesions and neurological diseases. Able to bind with high affinity synthetic and endogenous ligands, its core biochemical function resides in the translocation of cholesterol into the mitochondria influencing the subsequent steps of (neuro-)steroid synthesis and systemic endocrine regulation. Over the years, however, TSPO has also been linked to core cellular processes such as apoptosis and autophagy. It interacts and forms complexes with other mitochondrial proteins such as the voltage-dependent anion channel (VDAC) via which signalling and regulatory transduction of these core cellular events may be influenced. Despite nearly 40 years of study, the precise functional role of TSPO beyond cholesterol trafficking remains elusive even though the recent breakthroughs on its high-resolution crystal structure and contribution to quality-control signalling of mitochondria. All this along with a captivating pharmacological profile provides novel opportunities to investigate and understand the significance of this highly conserved protein as well as contribute the development of specific therapeutics as presented and discussed in the present review
Gathering dust : A galaxy-wide study of dust emission from cloud complexes in NGC 300
© 2018 ESO. Reproduced with permission from Astronomy & Astrophysics. Content in the UH Research Archive is made available for personal research, educational, and non-commercial purposes only. Unless otherwise stated, all content is protected by copyright, and in the absence of an open license, permissions for further re-use should be sought from the publisher, the author, or other copyright holder.Aims. We use multi-band observations by the Herschel Space Observatory to study the dust emission properties of the nearby spiral galaxy NGC 300. We compile a first catalogue of the population of giant dust clouds (GDCs) in NGC 300, including temperature and mass estimates, and give an estimate of the total dust mass of the galaxy. Methods. We carried out source detection with the multiwavelength source extraction algorithm getsources. We calculated physical properties, including mass and temperature, of the GDCs from five-band Herschel PACS and SPIRE observations from 100 to 500 μm; the final size and mass estimates are based on the observations at 250 μm that have an effective spatial resolution of ~170 pc. We correlated our final catalogue of GDCs to pre-existing catalogues of HII regions to infer the number of GDCs associated with high-mass star formation and determined the Hα emission of the GDCs. Results. Our final catalogue of GDCs includes 146 sources, 90 of which are associated with known HII regions. We find that the dust masses of the GDCs are completely dominated by the cold dust component and range from ~1.1 × 10 3 to 1.4 × 10 4 M. The GDCs have effective temperatures of ~13-23 K and show a distinct cold dust effective temperature gradient from the centre towards the outer parts of the stellar disk. We find that the population of GDCs in our catalogue constitutes ~16% of the total dust mass of NGC 300, which we estimate to be about 5.4 × 10 6 M. At least about 87% of our GDCs have a high enough average dust mass surface density to provide sufficient shielding to harbour molecular clouds. We compare our results to previous pointed molecular gas observations in NGC 300 and results from other nearby galaxies and also conclude that it is very likely that most of our GDCs are associated with complexes of giant molecular clouds.Peer reviewe
Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe
Shigella are human-adapted Escherichia coli that have gained the ability to invade the human gut mucosa and cause dysentery1,2, spreading efficiently via low-dose fecal-oral transmission3,4. Historically, S. sonnei has been predominantly responsible for dysentery in developed countries, but is now emerging as a problem in the developing world, apparently replacing the more diverse S. flexneri in areas undergoing economic development and improvements in water quality4-6. Classical approaches have shown S. sonnei is genetically conserved and clonal7. We report here whole-genome sequencing of 132 globally-distributed isolates. Our phylogenetic analysis shows that the current S. sonnei population descends from a common ancestor that existed less than 500 years ago and has diversified into several distinct lineages with unique characteristics. Our analysis suggests the majority of this diversification occurred in Europe, followed by more recent establishment of local pathogen populations in other continents predominantly due to the pandemic spread of a single, rapidly-evolving, multidrug resistant lineage
Prevalence of Obesity and Its Association with Cardiovascular Disease Risk Factors in Adolescent Girls from a College in Central Taiwan
Although obesity is associated with important hemodynamic disturbances, little data exists on population-wide cardiovascular risk factors in obese adolescent girls in Taiwan. This study measured the prevalence of overweight/obesity and related cardiovascular disease risk factors in adolescent females. This was a school-based survey of a representative sample of 291 females aged 15 and 18 years in a public college in Central Taiwan. The main measures were height, body weight, systolic (SBP) and diastolic blood pressure (DBP), uric acid, cholesterol, triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C). Obese (body mass index [BMI]≥25.3) and overweight (22.7≤BMI≤25.2) individuals were combined and labeled as overweight (BMI ≥22.7) to make communication of results clearer. Data gleaned from freshmen's health examinations were analyzed. The prevalence of obesity (BMI≥25.3) was 9.28% and of overweight (BMI≥22.7) was 21.31%. Being overweight was associated with higher SBP, DBP, uric acid and TG, and lower levels of HDL-C, but was not associated with cholesterol. The 15-year-old group showed higher mean levels of uric acid, total cholesterol, TG and HDL-C than the 18-year-old group (p < 0.05). All told, 3.1%, 15.12% and 2.1% of the girls showed abnormally elevated levels of uric acid, cholesterol and TG, respectively. In addition, 5.84% had abnormally lower HDL-C levels, indicating that interventions should focus on reducing obesity and encouraging proper dietary habits and sufficient exercise, especially in subjects with lower HDL-C levels and higher levels of cholesterol, TG and uric acid
- …
