3,941 research outputs found
Tunnelling Effect and Hawking Radiation from a Vaidya Black Hole
In this paper, we extend Parikh' work to the non-stationary black hole. As an
example of the non-stationary black hole, we study the tunnelling effect and
Hawking radiation from a Vaidya black hole whose Bondi mass is identical to its
mass parameter. We view Hawking radiation as a tunnelling process across the
event horizon and calculate the tunnelling probability. We find that the result
is different from Parikh's work because is the function of
Bondi mass m(v)
One conjecture and two observations on de Sitter space
We propose that the state represented by the Nariai black hole inside de
Sitter space is the ground state of the de Sitter gravity, while the pure de
Sitter space is the maximal energy state. With this point of view, we
investigate thermodynamics of de Sitter space, we find that if there is a dual
field theory, this theory can not be a CFT in a fixed dimension. Near the
Nariai limit, we conjecture that the dual theory is effectively an 1+1 CFT
living on the radial segment connecting the cosmic horizon and the black hole
horizon. If we go beyond the de Sitter limit, the "imaginary" high temperature
phase can be described by a CFT with one dimension lower than the spacetime
dimension. Below the de Sitter limit, we are approaching a phase similar to the
Hagedorn phase in 2+1 dimensions, the latter is also a maximal energy phase if
we hold the volume fixed.Comment: 12 pages, harvmac; references added; version for publication in JHE
De Sitter Holography with a Finite Number of States
We investigate the possibility that, in a combined theory of quantum
mechanics and gravity, de Sitter space is described by finitely many states.
The notion of observer complementarity, which states that each observer has
complete but complementary information, implies that, for a single observer,
the complete Hilbert space describes one side of the horizon. Observer
complementarity is implemented by identifying antipodal states with outgoing
states. The de Sitter group acts on S-matrix elements. Despite the fact that
the de Sitter group has no nontrivial finite-dimensional unitary
representations, we show that it is possible to construct an S-matrix that is
finite-dimensional, unitary, and de Sitter-invariant. We present a class of
examples that realize this idea holographically in terms of spinor fields on
the boundary sphere. The finite dimensionality is due to Fermi statistics and
an `exclusion principle' that truncates the orthonormal basis in which the
spinor fields can be expanded.Comment: 23 pages, 1 eps figure, LaTe
Superfund Reauthorization: Impact on State Environmental Enforcement
Branch predictor (BP) is an essential component in modern processors since high BP accuracy can improve performance and reduce energy by decreasing the number of instructions executed on wrong-path. However, reducing the latency and storage overhead of BP while maintaining high accuracy presents significant challenges. In this paper, we present a survey of dynamic branch prediction techniques. We classify the works based on key features to underscore their differences and similarities. We believe this paper will spark further research in this area and will be useful for computer architects, processor designers, and researchers
G\"{o}del black hole, closed timelike horizon, and the study of particle emissions
We show that a particle, with positive orbital angular momentum, following an
outgoing null/timelike geodesic, shall never reach the closed timelike horizon
(CTH) present in the -dimensional rotating G\"{o}del black hole
space-time. Therefore a large part of this space-time remains inaccessible to a
large class of geodesic observers, depending on the conserved quantities
associated with them. We discuss how this fact and the existence of the closed
timelike curves present in the asymptotic region make the quantum field
theoretic study of the Hawking radiation, where the asymptotic observer states
are a pre-requisite, unclear. However, the semiclassical approach provides an
alternative to verify the Smarr formula derived recently for the rotating
G\"{o}del black hole. We present a systematic analysis of particle emissions,
specifically for scalars, charged Dirac spinors and vectors, from this black
hole via the semiclassical complex path method.Comment: 13 pages; minor changes, references adde
Insulin inhibits cardiac contractility by inducing a Gi-biased β2-adrenergic signaling in hearts.
Insulin and adrenergic stimulation are two divergent regulatory systems that may interact under certain pathophysiological circumstances. Here, we characterized a complex consisting of insulin receptor (IR) and β2-adrenergic receptor (β2AR) in the heart. The IR/β2AR complex undergoes dynamic dissociation under diverse conditions such as Langendorff perfusions of hearts with insulin or after euglycemic-hyperinsulinemic clamps in vivo. Activation of IR with insulin induces protein kinase A (PKA) and G-protein receptor kinase 2 (GRK2) phosphorylation of the β2AR, which promotes β2AR coupling to the inhibitory G-protein, Gi. The insulin-induced phosphorylation of β2AR is dependent on IRS1 and IRS2. After insulin pretreatment, the activated β2AR-Gi signaling effectively attenuates cAMP/PKA activity after β-adrenergic stimulation in cardiomyocytes and consequently inhibits PKA phosphorylation of phospholamban and contractile responses in myocytes in vitro and in Langendorff perfused hearts. These data indicate that increased IR signaling, as occurs in hyperinsulinemic states, may directly impair βAR-regulated cardiac contractility. This β2AR-dependent IR and βAR signaling cross-talk offers a molecular basis for the broad interaction between these signaling cascades in the heart and other tissues or organs that may contribute to the pathophysiology of metabolic and cardiovascular dysfunction in insulin-resistant states
Two-and-a-half-year clinical experience with the world\u27s first magnetic resonance image guided radiation therapy system
Fermions Tunneling from Apparent Horizon of FRW Universe
In the paper [arXiv:0809.1554], the scalar particles' Hawking radiation from
the apparent horizon of Friedmann-Robertson-Walker(FRW) universe was
investigated by using the tunneling formalism. They obtained the Hawking
temperature associated with the apparent horizon, which was extensively applied
in investigating the relationship between the first law of thermodynamics and
Friedmann equations. In this paper, we calculate Fermions' Hawking radiation
from the apparent horizon of FRW universe via tunneling formalism. Applying WKB
approximation to the general covariant Dirac equation in FRW spacetime
background, the radiation spectrum and Hawking temperature of apparent horizon
are correctly recovered, which supports the arguments presented in the paper
[arXiv:0809.1554].Comment: 8 pages, no figure
Back reaction, emission spectrum and entropy spectroscopy
Recently, an interesting work, which reformulates the tunneling framework to
directly produce the Hawking emission spectrum and entropy spectroscopy in the
tunneling picture, has been received a broad attention. However, during the
emission process, most related observations have not incorporated the effects
of back reaction on the background spacetime, whose derivations are therefore
not the desiring results for the real physical process. With this point as a
central motivation, in this paper we suitably adapt the \emph{reformulated}
tunneling framework so that it can well accommodate the effects of back
reaction to produce the Hawking emission spectrum and entropy spectroscopy.
Consequently, we interestingly find that, when back reaction is considered, the
Parikh-Wilczek's outstanding observations that, an isolated radiating black
hole has an unitary-evolving emission spectrum that is \emph{not} precisely
thermal, but is related to the change of the Bekenstein-Hawking entropy, can
also be reproduced in the reformulated tunneling framework, meanwhile the
entropy spectrum has the same form as that without inclusion of back reaction,
which demonstrates the entropy quantum is \emph{independent} of the effects of
back reaction. As our final analysis, we concentrate on the issues of the black
hole information, but \emph{unfortunately} find that, even including the
effects of back reaction and higher-order quantum corrections, such tunneling
formalism can still not provide a mechanism for preserving the black hole
information.Comment: 16 pages, no figure, use JHEP3.cls. to be published in JHE
Reconstituting ring-rafts in bud-mimicking topography of model membranes.
During vesicular trafficking and release of enveloped viruses, the budding and fission processes dynamically remodel the donor cell membrane in a protein- or a lipid-mediated manner. In all cases, in addition to the generation or relief of the curvature stress, the buds recruit specific lipids and proteins from the donor membrane through restricted diffusion for the development of a ring-type raft domain of closed topology. Here, by reconstituting the bud topography in a model membrane, we demonstrate the preferential localization of cholesterol- and sphingomyelin-enriched microdomains in the collar band of the bud-neck interfaced with the donor membrane. The geometrical approach to the recapitulation of the dynamic membrane reorganization, resulting from the local radii of curvatures from nanometre-to-micrometre scales, offers important clues for understanding the active roles of the bud topography in the sorting and migration machinery of key signalling proteins involved in membrane budding
- …
