11,925 research outputs found
Rock-salt SnS and SnSe: Native Topological Crystalline Insulators
Unlike time-reversal topological insulators, surface metallic states with
Dirac cone dispersion in the recently discovered topological crystalline
insulators (TCIs) are protected by crystal symmetry. To date, TCI behaviors
have been observed in SnTe and the related alloys PbSnSe/Te,
which incorporate heavy elements with large spin-orbit coupling (SOC). Here, by
combining first-principles and {\it ab initio} tight-binding calculations, we
report the formation of a TCI in the relatively lighter rock-salt SnS and SnSe.
This TCI is characterized by an even number of Dirac cones at the high-symmetry
(001), (110) and (111) surfaces, which are protected by the reflection symmetry
with respect to the (10) mirror plane. We find that both SnS and SnSe
have an intrinsically inverted band structure and the SOC is necessary only to
open the bulk band gap. The bulk band gap evolution upon volume expansion
reveals a topological transition from an ambient pressure TCI to a
topologically trivial insulator. Our results indicate that the SOC alone is not
sufficient to drive the topological transition.Comment: 5 pages, 5 figure
Ageing and adrenomedullin in the male reproductive system of the rat
published_or_final_versio
Interaction of wave with a body floating on a wide polynya
A method based on wide spacing approximation is proposed for the interaction of water wave with a body floating on a polynya. The ice sheet is modelled as an elastic plate and fluid flow is described by the velocity potential theory. The solution procedure is constructed based on the assumption that when the distance between two disturbances to the free surface is sufficiently large, the interactions between them involve only the travelling waves caused by the disturbances and the effect of the evanescent waves is ignored. The solution for the problem can then be obtained from those for a floating body without an ice sheet and for an ice sheet/free surface without a floating body. Both latter solutions have already been found previously and therefore there will be no additional effort in solution once the wide spacing approximation formulation is derived. Extensive numerical results are provided to show that the method is very accurate compared with the exact solution. The obtained formulations are then used to provide some insightful explanations for the physics of flow behaviour, as well as the mechanism for the highly oscillatory features of the hydrodynamic force and body motion. Some explicit equations are derived to show zero reflection by the polynya and peaks and troughs of the force and excited body motion. It is revealed that some of the peaks of the body motion are due to resonance while others are due to the wave characters in the polynya
Increased adrenomedullin expression in the heart, the lung and the mesenteric artery by endotoxin
published_or_final_versio
Band structures and transport properties of zigzag graphene nanoribbons with antidot arrays
We study the band and transport features of zigzag graphene nanoribbon with an antidot lattice. It is found that an antidot lattice could turn semi-metal graphene into a semiconductor. The size of the band gap can be tuned by the position of the antidots and the distance D between the two nearest antidots. For a finite superlattice with N antidots and a large D, a group of (N - 1) splitting resonant peaks and transmission-blockade regions appear alternately in the conductance spectrum. This indicates the formation of minibands and minigaps. In addition, Fano resonances can be observed when the antidots are localized near one edge of the nanoribbon. These features provide potential applications for graphene-based electronic and optoelectronic devices. © 2010 IOP Publishing Ltd.postprin
Both ion channels and calcium signals regulate proliferation in human adult mesenchymal stem cells from bone marrow
BACKGROUND: It has been recognized that human bone marrow-derived mesenchymal stem cells (MSCs) are present within the bone marrow cavity and serve as a reservoir for the ...postprintThe 9th Annual Meeting of the International Society for Stem Cell Research (ISSCR 2011), Toronto, Canada, 15-18 June 2011. In Thursday Poster Abstracts of ISSCR, 2011, p. 156, poster board no. 301
Regulation of cell proliferation by ion channels in human mesenchymal stem cells
Oral presentationpublished_or_final_versionThe 15th Annual Research Conference of the Department of Medicine, The University of Hong Kong, Hong Kong, 16 January 2010. In Hong Kong Medical Journal, 2010, v. 16, suppl. 1, p. 65, abstract no. 11
Endotoxin increases adrenomedullin expression in heart, lung and mesenteric artery
published_or_final_versio
E2F1 Downregulation by Arsenic Trioxide in Lung Adenocarcinoma
Lung cancer is one of the most common cancers worldwide. Arsenic trioxide (ATO) has been approved by the U.S. Food and Drug Administration for the treatment of acute promyelocytic leukemia. Nonetheless preliminary data have suggested potential activity of ATO in solid tumors including lung cancer. This study aimed to examine the underlying mechanisms of ATO in the treatment of lung adenocarcinoma. Using a panel of 7 lung adenocarcinoma cell lines, the effects of ATO treatment on cell viability, expression of E2F1 and its downstream targets, phosphatidylserine externalization, mitochondrial membrane depolarization and alteration of apoptotic/anti-apoptotic factors were studied. Tumor growth inhibition in vivo was investigated using a nude mouse xenograft model. ATO decreased cell viability with clinically achievable concentrations (8 uM) in all cell lines investigated. This was accompanied by reduced expression of E2F1, cyclin A2, skp2, c-myc, thymidine kinase and ribonucleotide reductase M1, while p-c-Jun was upregulated. Cell viability was significantly decreased with E2F1 knockdown. Treatment with ATO resulted in phosphatidylserine externalization in H23 cells and mitochondrial membrane depolarization in all cell lines, associated with truncation of Bid, downregulation of Bcl-2, upregulation of Bax and Bak, caspase-9 and caspase-3 activation and PARP cleavage. Using a H358 xenograft model, the tumor growth was suppressed in the ATO treatment group during 8 days of treatment, associated with downregulation of E2F1 and upregulation of truncated Bid and cleaved caspase-3. In conclusion, ATO has potent in vitro and in vivo activity in lung adenocarcinoma, partially mediated through E2F1 downregulation and apoptosis.published_or_final_versio
Adrenomedullin suppresses migration inhibitory factor production and cytokine response of rat macrophages to lipopolysaccharide
published_or_final_versio
- …
