873 research outputs found
Erythrocyte Antibodies in AIDS are associated with mycobacteriosis and hypergammaglobulinemia
The macroscopic effects of microscopic heterogeneity
Over the past decade, advances in super-resolution microscopy and
particle-based modeling have driven an intense interest in investigating
spatial heterogeneity at the level of single molecules in cells. Remarkably, it
is becoming clear that spatiotemporal correlations between just a few molecules
can have profound effects on the signaling behavior of the entire cell. While
such correlations are often explicitly imposed by molecular structures such as
rafts, clusters, or scaffolds, they also arise intrinsically, due strictly to
the small numbers of molecules involved, the finite speed of diffusion, and the
effects of macromolecular crowding. In this chapter we review examples of both
explicitly imposed and intrinsic correlations, focusing on the mechanisms by
which microscopic heterogeneity is amplified to macroscopic effect.Comment: 20 pages, 5 figures. To appear in Advances in Chemical Physic
Plasmonic modes of extreme subwavelength nanocavities
We study the physics of a new type of subwavelength nanocavities. They are
based on U-shaped metal-insulator-metal waveguides supporting the excitation of
surface plasmon polaritons. The waveguides are simultaneously excited from both
sides of the U by incident plane waves. Due to their finite length discrete
modes emerge within the nanocavity. We show that the excitation symmetry with
respect to the cavity ends permits the observation of even and odd modes. Our
investigations include near and far field simulations and predict a strong
spectral far field response of the comparable small nanoresonators. The strong
near field enhancement observed in the cavity at resonance might be suitable to
increase the efficiency of nonlinear optical effects, quantum analogies and
might facilitate the development of active optical elements, such as active
plasmonic elements
Anomalous fluctuation relations
We study Fluctuation Relations (FRs) for dynamics that are anomalous, in the
sense that the diffusive properties strongly deviate from the ones of standard
Brownian motion. We first briefly review the concept of transient work FRs for
stochastic dynamics modeled by the ordinary Langevin equation. We then
introduce three generic types of dynamics generating anomalous diffusion:
L\'evy flights, long-time correlated Gaussian stochastic processes and
time-fractional kinetics. By combining Langevin and kinetic approaches we
calculate the work probability distributions in the simple nonequilibrium
situation of a particle subject to a constant force. This allows us to check
the transient FR for anomalous dynamics. We find a new form of FRs, which is
intimately related to the validity of fluctuation-dissipation relations.
Analogous results are obtained for a particle in a harmonic potential dragged
by a constant force. We argue that these findings are important for
understanding fluctuations in experimentally accessible systems. As an example,
we discuss the anomalous dynamics of biological cell migration both in
equilibrium and in nonequilibrium under chemical gradients.Comment: book chapter; 25 pages, 10 figures. see
http://www.maths.qmul.ac.uk/~klages/smallsys/smallsys_rk.htm
Localized behavior in the Lyapunov vectors for quasi-one-dimensional many-hard-disk systems
We introduce a definition of a "localization width" whose logarithm is given
by the entropy of the distribution of particle component amplitudes in the
Lyapunov vector. Different types of localization widths are observed, for
example, a minimum localization width where the components of only two
particles are dominant. We can distinguish a delocalization associated with a
random distribution of particle contributions, a delocalization associated with
a uniform distribution and a delocalization associated with a wave-like
structure in the Lyapunov vector. Using the localization width we show that in
quasi-one-dimensional systems of many hard disks there are two kinds of
dependence of the localization width on the Lyapunov exponent index for the
larger exponents: one is exponential, and the other is linear. Differences, due
to these kinds of localizations also appear in the shapes of the localized
peaks of the Lyapunov vectors, the Lyapunov spectra and the angle between the
spatial and momentum parts of the Lyapunov vectors. We show that the Krylov
relation for the largest Lyapunov exponent as a
function of the density is satisfied (apart from a factor) in the same
density region as the linear dependence of the localization widths is observed.
It is also shown that there are asymmetries in the spatial and momentum parts
of the Lyapunov vectors, as well as in their and -components.Comment: 41 pages, 21 figures, Manuscript including the figures of better
quality is available from http://www.phys.unsw.edu.au/~gary/Research.htm
High-throughput in vivo vertebrate screening
We demonstrate a high-throughput platform for cellular-resolution in vivo chemical and genetic screens on zebrafish larvae. The system automatically loads zebrafish from reservoirs or multiwell plates, and positions and rotates them for high-speed confocal imaging and laser manipulation of both superficial and deep organs within 19 s without damage. We performed small-scale test screening of retinal axon guidance mutants and neuronal regeneration assays in combination with femtosecond laser microsurgery.National Institutes of Health (U.S.) (Director’s Innovator Award 1-DP2-OD002989–01)David & Lucile Packard Foundation (Award in Science and Engineering)Alfred P. Sloan Foundation (Award)Broad Institute of MIT and Harvard (Sparc Grant)National Science Foundation (U.S.) (Fellowship)Foxconn (Sponsorship
Erythropoietin signaling regulates heme biosynthesis
Heme is required for survival of all cells, and in most eukaryotes, is produced through a series of eight enzymatic reactions. Although heme production is critical for many cellular processes, how it is coupled to cellular differentiation is unknown. Here, using zebrafish, murine, and human models, we show that erythropoietin (EPO) signaling, together with the GATA1 transcriptional target, AKAP10, regulates heme biosynthesis during erythropoiesis at the outer mitochondrial membrane. This integrated pathway culminates with the direct phosphorylation of the crucial heme biosynthetic enzyme, ferrochelatase (FECH) by protein kinase A (PKA). Biochemical, pharmacological, and genetic inhibition of this signaling pathway result in a block in hemoglobin production and concomitant intracellular accumulation of protoporphyrin intermediates. Broadly, our results implicate aberrant PKA signaling in the pathogenesis of hematologic diseases. We propose a unifying model in which the erythroid transcriptional program works in concert with post-translational mechanisms to regulate heme metabolism during normal development
Effect of promoter architecture on the cell-to-cell variability in gene expression
According to recent experimental evidence, the architecture of a promoter,
defined as the number, strength and regulatory role of the operators that
control the promoter, plays a major role in determining the level of
cell-to-cell variability in gene expression. These quantitative experiments
call for a corresponding modeling effort that addresses the question of how
changes in promoter architecture affect noise in gene expression in a
systematic rather than case-by-case fashion. In this article, we make such a
systematic investigation, based on a simple microscopic model of gene
regulation that incorporates stochastic effects. In particular, we show how
operator strength and operator multiplicity affect this variability. We examine
different modes of transcription factor binding to complex promoters
(cooperative, independent, simultaneous) and how each of these affects the
level of variability in transcription product from cell-to-cell. We propose
that direct comparison between in vivo single-cell experiments and theoretical
predictions for the moments of the probability distribution of mRNA number per
cell can discriminate between different kinetic models of gene regulation.Comment: 35 pages, 6 figures, Submitte
Mapping Dirac quasiparticles near a single Coulomb impurity on graphene
The response of Dirac fermions to a Coulomb potential is predicted to differ significantly from how non-relativistic electrons behave in traditional atomic and impurity systems. Surprisingly, many key theoretical predictions for this ultra-relativistic regime have not been tested. Graphene, a two-dimensional material in which electrons behave like massless Dirac fermions, provides a unique opportunity to test such predictions. Graphene’s response to a Coulomb potential also offers insight into important material characteristics, including graphene’s intrinsic dielectric constant, which is the primary factor determining the strength of electron–electron interactions in graphene. Here we present a direct measurement of the nanoscale response of Dirac fermions to a single Coulomb potential placed on a gated graphene device. Scanning tunnelling microscopy was used to fabricate tunable charge impurities on graphene, and to image electronic screening around them for a Q = +1|e| charge state. Electron-like and hole-like Dirac fermions were observed to respond differently to a Coulomb potential. Comparing the observed electron–hole asymmetry to theoretical simulations has allowed us to test predictions for how Dirac fermions behave near a Coulomb potential, as well as extract graphene’s intrinsic dielectric constant: ε[subscript g] = 3.0±1.0. This small value of ε[subscript g] indicates that electron–electron interactions can contribute significantly to graphene properties.United States. Office of Naval Research. Multidisciplinary University Research Initiative (Award N00014-09-1-1066)United States. Dept. of Energy. Office of Science (Contract DE-AC02-05CH11231)National Science Foundation (U.S.) (Award DMR-0906539
- …
