24,745 research outputs found
Material modelling and springback analysis for multi-stage rotary draw bending of thin-walled tube using homogeneous anisotropic hardening model
The aim of this paper is to compare several hardening models and to show their relevance for the prediction of springback and deformation of an asymmetric aluminium alloy tube in multi-stage rotary draw bending process. A three-dimensional finite-element model of the process is developed using the ABAQUS code. For material modelling, the newly developed homogeneous anisotropic hardening model is adopted to capture the Bauschinger effect and transient hardening behaviour of the aluminium alloy tube subjected to non-proportional loading. The material parameters of the hardening model are obtained from uniaxial tension and forward-reverse shear test results of tube specimens. This work shows that this approach reproduces the transient Bauschinger behaviour of the material reasonably well. However, a curve-crossing phenomenon observed for this material cannot be captured by the homogeneous anisotropic hardening model. For comparison purpose, the isotropic and combined isotropic-kinematic hardening models are also adopted for the analysis of the same problem. The predictions of springback and cross-section deformation based on these models are discussed. (C) 2014 The Authors. Published by Elsevier Ltd.open1134Nsciescopu
Geochemistry and petrogenesis of volcanic rocks from Daimao Seamount (South China Sea) and their tectonic implications
The South China Sea (SCS) experienced three episodes of seafloor spreading and left three fossil spreading centers presently located at 18°N, 17°N and 15.5°N. Spreading ceased at these three locations during magnetic anomaly 10, 8, and 5c, respectively. Daimao Seamount (16.6. Ma) was formed 10. my after the cessation of the 17°N spreading center. Volcaniclastic rocks and shallow-water carbonate facies near the summit of Daimao Seamount provide key information on the seamount's geologic history. New major and trace element and Sr-Nd-Pb isotopic compositions of basaltic breccia clasts in the volcaniclastics suggest that Daimao and other SCS seamounts have typical ocean island basalt-like composition and possess a 'Dupal' isotopic signature. Our new analyses, combined with available data, indicate that the basaltic foundation of Daimao Seamount was formed through subaqueous explosive volcanic eruptions at 16.6. Ma. The seamount subsided rapidly (>. 0.12. mm/y) at first, allowing the deposition of shallow-water, coral-bearing carbonates around its summit and, then, at a slower rate (<. 0.12. mm/y). We propose that the parental magmas of SCS seamount lavas originated from the Hainan mantle plume. In contrast, lavas from contemporaneous seamounts in other marginal basins in the western Pacific are subduction-related
Deep Learning for Single Image Super-Resolution: A Brief Review
Single image super-resolution (SISR) is a notoriously challenging ill-posed
problem, which aims to obtain a high-resolution (HR) output from one of its
low-resolution (LR) versions. To solve the SISR problem, recently powerful deep
learning algorithms have been employed and achieved the state-of-the-art
performance. In this survey, we review representative deep learning-based SISR
methods, and group them into two categories according to their major
contributions to two essential aspects of SISR: the exploration of efficient
neural network architectures for SISR, and the development of effective
optimization objectives for deep SISR learning. For each category, a baseline
is firstly established and several critical limitations of the baseline are
summarized. Then representative works on overcoming these limitations are
presented based on their original contents as well as our critical
understandings and analyses, and relevant comparisons are conducted from a
variety of perspectives. Finally we conclude this review with some vital
current challenges and future trends in SISR leveraging deep learning
algorithms.Comment: Accepted by IEEE Transactions on Multimedia (TMM
Finite-Time Bounded Tracking Control for Linear Discrete-Time Systems
© 2018 Fucheng Liao et al. A finite-time bounded tracking control problem for a class of linear discrete-time systems subject to disturbances is investigated. Firstly, by applying a difference method to constructing the error system, the problem is transformed into a finite-time boundedness problem of the output vector of the error system. In fact, this is a finite-time boundedness problem with respect to the partial variables. Secondly, based on the partial stability theory and the research methods of finite-time boundedness problem, a state feedback controller formulated in form of linear matrix inequality is proposed. Based on this, a finite-time bounded tracking controller of the original system is obtained. Finally, a numerical example is presented to illustrate the effectiveness of the controller
Parallel field magnetoresistance in topological insulator thin films
We report that the finite thickness of three-dimensional topological
insulator (TI) thin films produces an observable magnetoresistance (MR) in
phase coherent transport in parallel magnetic fields. The MR data of Bi2Se3 and
(Bi,Sb)2Te3 thin films are compared with existing theoretical models of
parallel field magnetotransport. We conclude that the TI thin films bring
parallel field transport into a unique regime in which the coupling of surface
states to bulk and to opposite surfaces is indispensable for understanding the
observed MR. The {\beta} parameter extracted from parallel field MR can in
principle provide a figure of merit for searching TI compounds with more
insulating bulk than existing materials.Comment: 6 pages, 4 figure
Robust Preview Control for a Class of Uncertain Discrete-Time Lipschitz Nonlinear Systems
© 2018 Xiao Yu et al. This paper considers the design of the robust preview controller for a class of uncertain discrete-time Lipschitz nonlinear systems. According to the preview control theory, an augmented error system including the tracking error and the known future information on the reference signal is constructed. To avoid static error, a discrete integrator is introduced. Using the linear matrix inequality (LMI) approach, a state feedback controller is developed to guarantee that the closed-loop system of the augmented error system is asymptotically stable with H∞ performance. Based on this, the robust preview tracking controller of the original system is obtained. Finally, two numerical examples are included to show the effectiveness of the proposed controller
Static Potentials and the Magnetic Component of QCD Plasma near
Static quark-anti-quark potential encodes important information on the
chromodynamical interaction between color charges, and recent lattice results
show its very nontrivial behavior near the deconfinement temperature . In
this paper we study such potential in the framework of the ``magnetic
scenario'' for the near Tc QCD plasma, and particularly focus on the linear
part (as quantified by its slope, the tension) in the potential as well as the
strong splitting between the free energy and internal energy. By using an
analytic ``ellipsoidal bag'' model, we will quantitatively relate the free
energy tension to the magnetic condensate density and relate the internal
energy tension to the thermal monopole density. By converting the lattice
results for static potential into density for thermal monopoles we find the
density to be very large around Tc and indicate at quantum coherence, in good
agreement with direct lattice calculation of such density. A few important
consequences for heavy ion collisions phenomenology will also be discussed.Comment: 10 pages, 6 figure
- …
