4,389 research outputs found

    Einstein Gravity as an emergent phenomenon?

    Get PDF
    In this essay we marshal evidence suggesting that Einstein gravity may be an emergent phenomenon, one that is not ``fundamental'' but rather is an almost automatic low-energy long-distance consequence of a wide class of theories. Specifically, the emergence of a curved spacetime ``effective Lorentzian geometry'' is a common generic result of linearizing a classical scalar field theory around some non-trivial background. This explains why so many different ``analog models'' of general relativity have recently been developed based on condensed matter physics; there is something more fundamental going on. Upon quantizing the linearized fluctuations around this background geometry, the one-loop effective action is guaranteed to contain a term proportional to the Einstein--Hilbert action of general relativity, suggesting that while classical physics is responsible for generating an ``effective geometry'', quantum physics can be argued to induce an ``effective dynamics''. This physical picture suggests that Einstein gravity is an emergent low-energy long-distance phenomenon that is insensitive to the details of the high-energy short-distance physics.Comment: 8 pages, Essay awarded an honorable mention in the year 2001 Gravity Research Foundation essay competitio

    High energy constraints on Lorentz symmetry violations

    Get PDF
    Lorentz violation at high energies might lead to non linear dispersion relations for the fundamental particles. We analyze observational constraints on these without assuming any a priori equality between the coefficients determining the amount of Lorentz violation for different particle species. We focus on constraints from three high energy processes involving photons and electrons: photon decay, photo-production of electron-positron pairs, and vacuum Cerenkov radiation. We find that cubic momentum terms in the dispersion relations are strongly constrained.Comment: 7 pages, 1 figure, Talk presented at CPT01; the Second Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, 15-18 Aug. 2001. Minor numerical error corrected, gamma-decay constraint update

    Sonoluminescence as a QED vacuum effect: Probing Schwinger's proposal

    Full text link
    Several years ago Schwinger proposed a physical mechanism for sonoluminescence in terms of photon production due to changes in the properties of the quantum-electrodynamic (QED) vacuum arising from a collapsing dielectric bubble. This mechanism can be re-phrased in terms of the Casimir effect and has recently been the subject of considerable controversy. The present paper probes Schwinger's suggestion in detail: Using the sudden approximation we calculate Bogolubov coefficients relating the QED vacuum in the presence of the expanded bubble to that in the presence of the collapsed bubble. In this way we derive an estimate for the spectrum and total energy emitted. We verify that in the sudden approximation there is an efficient production of photons, and further that the main contribution to this dynamic Casimir effect comes from a volume term, as per Schwinger's original calculation. However, we also demonstrate that the timescales required to implement Schwinger's original suggestion are not physically relevant to sonoluminescence. Although Schwinger was correct in his assertion that changes in the zero-point energy lead to photon production, nevertheless his original model is not appropriate for sonoluminescence. In other works (see quant-ph/9805023, quant-ph/9904013, quant-ph/9904018, quant-ph/9905034) we have developed a variant of Schwinger's model that is compatible with the physically required timescales.Comment: 18 pages, ReV_TeX 3.2, 9 figures. Major revisions: This document is now limited to providing a probe of Schwinger's original suggestion for sonoluminescence. For details on our own variant of Schwinger's ideas see quant-ph/9805023, quant-ph/9904013, quant-ph/9904018, quant-ph/990503

    Particle creation by moving spherical shell in the dynamical Casimir effect

    Get PDF
    The creation of massless scalar particles from the quantum vacuum by spherical shell with time varying radius is studied. In the general case of motion the equations are derived for the instantaneous basis expansion coefficients. The examples are considered when the mean number of particles can be explicitly evaluated in the adiabatic approximation.Comment: 9 pages, LaTeX, no figures, typos corrected, discussion added. Journal-ref adde

    Irreducible modules over finite simple Lie conformal superalgebras of type K

    Get PDF
    We construct all finite irreducible modules over Lie conformal superalgebras of type KComment: Accepted for publication in J. Math. Phys

    Real decoupling ghost quantization of the CGHS model for two dimensional black holes

    Full text link
    A complete RST quantization of a CGHS model plus Strominger term is carried out. In so doing a conformal invariant theory with κ=N12\kappa=\frac{N}{12} is found, that is, without ghosts contribution. The physical consequences of the model are analysed and positive definite Hawking radiation is found.Comment: 14 pages, latex, no figures, marginal errors correcte

    Field equations from a surface term

    Full text link
    As is well known, in order for the Einstein--Hilbert action to have a well defined variation, and therefore to be used for deriving field equation through the stationary action principle, it has to be amended by the addition of a suitable boundary term. It has recently been claimed that, if one constructs an action by adding this term to the matter action, the Einstein field equations can be derived by requiring this action to be invariant under active transformations which are normal to a null boundary. In this paper we re-examine this approach both for the case of pure gravity and in the presence of matter. We show that in the first case this procedure holds for more general actions than the Einstein-Hilbert one and trace the basis of this remarkable attribute. However, it is also pointed out the when matter is rigorously considered the approach breaks down. The reasons for that are thoroughly discussed.Comment: Typos corrected, minor changes to match published versio

    Sonoluminescence as a QED vacuum effect. II: Finite Volume Effects

    Get PDF
    In a companion paper [quant-ph/9904013] we have investigated several variations of Schwinger's proposed mechanism for sonoluminescence. We demonstrated that any realistic version of Schwinger's mechanism must depend on extremely rapid (femtosecond) changes in refractive index, and discussed ways in which this might be physically plausible. To keep that discussion tractable, the technical computations in that paper were limited to the case of a homogeneous dielectric medium. In this paper we investigate the additional complications introduced by finite-volume effects. The basic physical scenario remains the same, but we now deal with finite spherical bubbles, and so must decompose the electromagnetic field into Spherical Harmonics and Bessel functions. We demonstrate how to set up the formalism for calculating Bogolubov coefficients in the sudden approximation, and show that we qualitatively retain the results previously obtained using the homogeneous-dielectric (infinite volume) approximation.Comment: 23 pages, LaTeX 209, ReV-TeX 3.2, five figure

    Probing semiclassical analogue gravity in Bose--Einstein condensates with widely tunable interactions

    Full text link
    Bose-Einstein condensates (BEC) have recently been the subject of considerable study as possible analogue models of general relativity. In particular it was shown that the propagation of phase perturbations in a BEC can, under certain conditions, closely mimic the dynamics of scalar quantum fields in curved spacetimes. In two previous articles [gr-qc/0110036, gr-qc/0305061] we noted that a varying scattering length in the BEC corresponds to a varying speed of light in the ``effective metric''. Recent experiments have indeed achieved a controlled tuning of the scattering length in Rubidium 85. In this article we shall discuss the prospects for the use of this particular experimental effect to test some of the predictions of semiclassical quantum gravity, for instance, particle production in an expanding universe. We stress that these effects are generally much larger than the Hawking radiation expected from causal horizons, and so there are much better chances for their detection in the near future.Comment: 18 pages; uses revtex4. V2: Added brief discussion of "Bose-Nova" phenomenon, and appropriate reference
    corecore