24,163 research outputs found
A Logical Method for Policy Enforcement over Evolving Audit Logs
We present an iterative algorithm for enforcing policies represented in a
first-order logic, which can, in particular, express all transmission-related
clauses in the HIPAA Privacy Rule. The logic has three features that raise
challenges for enforcement --- uninterpreted predicates (used to model
subjective concepts in privacy policies), real-time temporal properties, and
quantification over infinite domains (such as the set of messages containing
personal information). The algorithm operates over audit logs that are
inherently incomplete and evolve over time. In each iteration, the algorithm
provably checks as much of the policy as possible over the current log and
outputs a residual policy that can only be checked when the log is extended
with additional information. We prove correctness and termination properties of
the algorithm. While these results are developed in a general form, accounting
for many different sources of incompleteness in audit logs, we also prove that
for the special case of logs that maintain a complete record of all relevant
actions, the algorithm effectively enforces all safety and co-safety
properties. The algorithm can significantly help automate enforcement of
policies derived from the HIPAA Privacy Rule.Comment: Carnegie Mellon University CyLab Technical Report. 51 page
Cosmological Signature of New Parity-Violating Interactions
Does Nature yield any manifestations of parity violation other than those
observed in weak interactions? A map of the cosmic microwave background (CMB)
temperature and polarization will provide a new signature of P violation. We
give two examples of new P violating interactions, which may have something to
do with Planck-scale physics, inflation, and/or quintessence, that would give
rise to such a signature. Although these effects would most likely elude
detection by MAP and the Planck Surveyor, they may be detectable with a future
dedicated CMB polarization experiment.Comment: 4 pages, 2 figures. Origin of new terms clarified, to be published in
Physical Review Letter
Lattice Boltzmann Model for The Volume-Averaged Navier-Stokes Equations
A numerical method, based on the discrete lattice Boltzmann equation, is
presented for solving the volume-averaged Navier-Stokes equations. With a
modified equilibrium distribution and an additional forcing term, the
volume-averaged Navier-Stokes equations can be recovered from the lattice
Boltzmann equation in the limit of small Mach number by the Chapman-Enskog
analysis and Taylor expansion. Due to its advantages such as explicit solver
and inherent parallelism, the method appears to be more competitive with
traditional numerical techniques. Numerical simulations show that the proposed
model can accurately reproduce both the linear and nonlinear drag effects of
porosity in the fluid flow through porous media.Comment: 9 pages, 2 figure
- …
