17 research outputs found

    Hematologic malignancies following immune checkpoint inhibition for solid tumors

    Get PDF
    Immune checkpoint inhibition (ICI) can induce durable responses in patients with advanced malignancies. Three cases of hematological neoplasia following ICI for solid tumors have been reported to date. We present five patients treated at our tertiary referral center between 2017 and 2021 who developed chronic myeloid leukemia (two patients), acute myeloid leukemia, myelodysplastic syndrome and chronic eosinophilic leukemia during or after anti-PD-1-based treatment. Molecular analyses were performed on pre-ICI samples to identify baseline variants in myeloid genes. We hypothesize that PD-1 blockade might accelerate progression to overt myeloid malignancies and discuss potential underlying mechanisms

    Acute-Onset Pneumonitis while Administering the First Dose of Durvalumab

    No full text
    In locally advanced non-small cell lung cancer (NSCLC) patients, consolidation therapy with durvalumab (an anti-PD-L1 monoclonal antibody) has proven to significantly increase both progression free and overall survival after chemoradiotherapy. Here, we describe a case of acute pneumonitis during durvalumab administration for locally advanced NSCLC, causing persistent symptomatology and steroid treatment to date. To our knowledge, acute-onset pneumonitis during infusion of a PD-L1 inhibitor has not been described previously. This case illustrates that ICI-induced pneumonitis can occur anytime during treatment, especially after chemoradiation.</jats:p

    Nuclear envelope rupture and repair during cancer cell migration

    No full text
    During cancer metastasis, tumor cells penetrate tissues through tight interstitial spaces, which requires extensive deformation of the cell and its nucleus. Here, we investigated mammalian tumor cell migration in confining microenvironments in vitro and in vivo. Nuclear deformation caused localized loss of nuclear envelope (NE) integrity, which led to the uncontrolled exchange of nucleo-cytoplasmic content, herniation of chromatin across the NE, and DNA damage. The incidence of NE rupture increased with cell confinement and with depletion of nuclear lamins, NE proteins that structurally support the nucleus. Cells restored NE integrity using components of the endosomal sorting complexes required for transport III (ESCRT III) machinery. Our findings indicate that cell migration incurs substantial physical stress on the NE and its content and requires efficient NE and DNA damage repair for cell survival

    Activation of a bovine mammary epithelial cell line by ruminant-associated staphylococcus aureus is lineage dependent

    Get PDF
    Bovine mastitis is a costly disease to the dairy industry and intramammary infections (IMI) with Staphylococcus aureus are a major cause of mastitis. Staphylococcus aureus strains responsible for mastitis in cattle predominantly belong to ruminant-associated clonal complexes (CCs). Recognition of pathogens by bovine mammary epithelial cells (bMEC) plays a key role in activation of immune responsiveness during IMI. However, it is still largely unknown to what extent the bMEC response differs according to S. aureus CC. The aim of this study was to determine whether ruminant-associated S. aureus CCs differentially activate bMEC. For this purpose, the immortalized bMEC line PS was stimulated with S. aureus mastitis isolates belonging to four different clonal complexes (CCs; CC133, CC479, CC151 and CC425) and interleukin 8 (IL-8) release was measured as indicator of activation. To validate our bMEC model, we first stimulated PS cells with genetically modified S. aureus strains lacking (protein A, wall teichoic acid (WTA) synthesis) or expressing (capsular polysaccharide (CP) type 5 or type 8) factors expected to affect S. aureus recognition by bMEC. The absence of functional WTA synthesis increased IL-8 release by bMEC in response to bacterial stimulation compared to wildtype. In addition, bMEC released more IL-8 after stimulation with S. aureus expressing CP type 5 compared to CP type 8 or a strain lacking CP expression. Among the S. aureus lineages, isolates belonging to CC133 induced a significantly stronger IL-8 release from bMEC than isolates from the other CCs, and the IL-8 response to CC479 was higher compared to CC151 and CC425. Transcription levels of IL-8, tumor necrosis factor alpha (TNFα), serum amyloid A3 (SAA3), Toll-like receptor (TLR)-2 and nuclear factor κB (NF-κB) in bMEC after bacterial stimulation tended to follow a similar pattern as IL-8 release, but there were no significant differences between the CCs. This study demonstrates a differential activation of bMEC by ruminant-associated CCs of S. aureus, which may have implications for the severity of mastitis during IMI by S. aureus belonging to these lineages

    Activation of a bovine mammary epithelial cell line by ruminant-associated staphylococcus aureus is lineage dependent

    Get PDF
    Bovine mastitis is a costly disease to the dairy industry and intramammary infections (IMI) with Staphylococcus aureus are a major cause of mastitis. Staphylococcus aureus strains responsible for mastitis in cattle predominantly belong to ruminant-associated clonal complexes (CCs). Recognition of pathogens by bovine mammary epithelial cells (bMEC) plays a key role in activation of immune responsiveness during IMI. However, it is still largely unknown to what extent the bMEC response differs according to S. aureus CC. The aim of this study was to determine whether ruminant-associated S. aureus CCs differentially activate bMEC. For this purpose, the immortalized bMEC line PS was stimulated with S. aureus mastitis isolates belonging to four different clonal complexes (CCs; CC133, CC479, CC151 and CC425) and interleukin 8 (IL-8) release was measured as indicator of activation. To validate our bMEC model, we first stimulated PS cells with genetically modified S. aureus strains lacking (protein A, wall teichoic acid (WTA) synthesis) or expressing (capsular polysaccharide (CP) type 5 or type 8) factors expected to affect S. aureus recognition by bMEC. The absence of functional WTA synthesis increased IL-8 release by bMEC in response to bacterial stimulation compared to wildtype. In addition, bMEC released more IL-8 after stimulation with S. aureus expressing CP type 5 compared to CP type 8 or a strain lacking CP expression. Among the S. aureus lineages, isolates belonging to CC133 induced a significantly stronger IL-8 release from bMEC than isolates from the other CCs, and the IL-8 response to CC479 was higher compared to CC151 and CC425. Transcription levels of IL-8, tumor necrosis factor alpha (TNFα), serum amyloid A3 (SAA3), Toll-like receptor (TLR)-2 and nuclear factor κB (NF-κB) in bMEC after bacterial stimulation tended to follow a similar pattern as IL-8 release, but there were no significant differences between the CCs. This study demonstrates a differential activation of bMEC by ruminant-associated CCs of S. aureus, which may have implications for the severity of mastitis during IMI by S. aureus belonging to these lineages

    Toxicity-specific peripheral blood T and B cell dynamics in anti-PD-1 and combined immune checkpoint inhibition

    Full text link
    Immune checkpoint inhibitors (ICI) have revolutionized the treatment landscape of advanced malignancies, but come with a diverse spectrum of immune-related adverse events (irAEs). Mechanistic studies can aid the transition from expert-opinion to evidence-based irAE treatment strategies. We aimed to longitudinally characterize peripheral blood T and B cell dynamics in ICI-treated patients by multicolor flow cytometry and serum multiplex immunoassay at baseline, ±3 weeks and ±6 weeks or upon clinically relevant irAEs. We analyzed samples from 44 ICI-treated patients (24 anti-PD-1 monotherapy, 20 combined anti-PD-1/anti-CTLA-4; cICI), of whom 21 developed irAEs, and 10 healthy donors. IrAEs after cICI were characterized by significantly enhanced proliferation of Th1-associated, mainly (CD4+) effector memory T cells, as well as Th17-associated immune responses and germinal center activation (reflected by CXCL13 and IL-21 increases). We observed no changes in CD21lo, memory, class-switched or newly activated B cell subsets. Especially double-positive PD-1+LAG-3+CD8+T cells showed enhanced cytotoxic capacity in patients with irAEs after cICI. Within anti-PD-1 monotherapy, irAEs were associated with modestly enhanced Th1-associated responses reflected by increased serum CXCL9 and CXCL10. In conclusion, ICI-induced toxicity is dominated by enhanced Th1-associated responses, but in cICI we also found evidence for Th17-associated responses and germinal center activation. Together, our data add to the growing body of evidence that irAEs may be driven by newly activated CD4+helper T cells, specifically after cICI. This study also supports tailored irAE treatment, based on ICI regimen, and to deploy specific strategies such as Th17 inhibition especially in cICI-associated irAEs.</jats:p

    LukMF′ is the major secreted leukocidin of bovine Staphylococcus aureus and is produced in vivo during bovine mastitis

    Get PDF
    Staphylococcus aureus is a major human and animal pathogen and a common cause of mastitis in cattle. S. aureus secretes several leukocidins that target bovine neutrophils, crucial effector cells in the defence against bacterial pathogens. In this study, we investigated the role of staphylococcal leukocidins in the pathogenesis of bovine S. aureus disease. We show that LukAB, in contrast to the γ-hemolysins, LukED, and LukMF′, was unable to kill bovine neutrophils, and identified CXCR2 as a bovine receptor for HlgAB and LukED. Furthermore, we assessed functional leukocidin secretion by bovine mastitis isolates and observed that, although leukocidin production was strain dependent, LukMF′ was most abundantly secreted and the major toxin killing bovine neutrophils. To determine the role of LukMF′ in bovine mastitis, cattle were challenged with high (S1444) or intermediate (S1449, S1463) LukMF′-producing isolates. Only animals infected with S1444 developed severe clinical symptoms. Importantly, LukM was produced in vivo during the course of infection and levels in milk were associated with the severity of mastitis. Altogether, these findings underline the importance of LukMF′ as a virulence factor and support the development of therapeutic approaches targeting LukMF′ to control S. aureus mastitis in cattle.</p

    Why England? Demographic factors, structural change and physical capital accumulation during the Industrial Revolution

    No full text
    Why did England industrialize first? And why was Europe ahead of the rest of the world? Unified growth theory in the tradition of Galor and Weil (2000, American Economic Review, 89, 806–828) and Galor and Moav (2002, Quartely Journal of Economics, 177(4), 1133–1191) captures the key features of the transition from stagnation to growth over time. Yet we know remarkably little about why industrialization occurred much earlier in some parts of the world than in others. To answer this question, we present a probabilistic two-sector model where the initial escape from Malthusian constraints depends on the demographic regime, capital deepening and the use of more differentiated capital equipment. Weather-induced shocks to agricultural productivity cause changes in prices and quantities, and affect wages. In a standard model with capital externalities, these fluctuations interact with the demographic regime and affect the speed of growth. Our model is calibrated to match the main characteristics of the English economy in 1700 and the observed transition until 1850. We capture one of the key features of the British Industrial Revolution emphasized by economic historians — slow growth of output and productivity. Fertility limitation is responsible for higher per capita incomes, and these in turn increase industrialization probabilities. The paper also explores the availability of nutrition for poorer segments of society. We examine the influence of redistributive institutions such as the Old Poor Law, and find they were not decisive in fostering industrialization. Simulations using parameter values for other countries show that Britain’s early escape was only partly due to chance. France could have moved out of agriculture and into manufacturing faster than Britain, but the probability was less than 25%. Contrary to recent claims in the literature, 18th century China had only a minimal chance to escape from Malthusian constraints. Copyright Springer Science+Business Media, LLC 2006Industrial Revolution, Unified growth theory, Endogenous growth, Transition, Calibration, British economic growth before 1850, E27, N13, N33, O14, O41,
    corecore