103 research outputs found

    Suppression of MAPK11 or HIPK3 reduces mutant Huntingtin levels in Huntington's disease models.

    Get PDF
    Most neurodegenerative disorders are associated with accumulation of disease-relevant proteins. Among them, Huntington disease (HD) is of particular interest because of its monogenetic nature. HD is mainly caused by cytotoxicity of the defective protein encoded by the mutant Huntingtin gene (HTT). Thus, lowering mutant HTT protein (mHTT) levels would be a promising treatment strategy for HD. Here we report two kinases HIPK3 and MAPK11 as positive modulators of mHTT levels both in cells and in vivo. Both kinases regulate mHTT via their kinase activities, suggesting that inhibiting these kinases may have therapeutic values. Interestingly, their effects on HTT levels are mHTT-dependent, providing a feedback mechanism in which mHTT enhances its own level thus contributing to mHTT accumulation and disease progression. Importantly, knockout of MAPK11 significantly rescues disease-relevant behavioral phenotypes in a knockin HD mouse model. Collectively, our data reveal new therapeutic entry points for HD and target-discovery approaches for similar diseases

    Comparison of different Rhodiola species using NMR-metabolomics, HPTLC and DNA barcoding techniques

    Get PDF
    The fast developing international trade of products based on local and traditional knowledge and their associated value chains have become an important aspect of the ethnopharmacological debate. The structure and diversity of value chains and their impact on the phytochemical composition of herbal medicinal products (HMPs) has been overlooked in quality issues in transnational trade. Medicinal Rhodiola species, including R. rosea L. and R. crenulata (Hook.f. & Thomson) H.Ohba, abbreviate genus have been widely used as traditional herbal medicines with numerous claims for their therapeutic effects [1]. Faced with resource depletion and environment destruction, R. rosea and R. crenulata are becoming endangered, making them more economically valuable to collectors and middlemen, and also increasing the risk of adulteration and low quality. This study compares the phytochemical differences among Rhodiola raw materials available on the market and provides a practical method for Rhodiola authentication. Nuclear magnetic resonance (NMR) spectroscopy coupled with multivariate analysis software and high performance thin layer chromatography (HPTLC) techniques were used to analyse the phytochemical differences between five Rhodiola species. We compared the phytochemical composition of collected Rhodiola samples to authenticated samples. Rosavin and rosarin were mainly present in R. rosea whereas an unknown compound was only present in R. crenulata. 30% of the Rhodiola samples purchased from the Chinese market were adulterated by other Rhodiola spp. 7% of the raw-material samples were not labelled properly and the species information was not clearly illustrated. Both 1H-NMR and HPTLC methods provided an integrated analysis of the phytochemical differences between the species studied. This study provided an identification method for R. rosea and R. crenulata and provided further analytical data that could form the basis for the identification of other species. The integrated identification approach combining these two analytical platforms offers an innovative and practical way of assessing the chemical variability along the value chains of medicinal plants

    Sp1 Is Essential for p16(INK4a) Expression in Human Diploid Fibroblasts during Senescence

    Get PDF
    BACKGROUND: p16 (INK4a) tumor suppressor protein has been widely proposed to mediate entrance of the cells into the senescent stage. Promoter of p16 (INK4a) gene contains at least five putative GC boxes, named GC-I to V, respectively. Our previous data showed that a potential Sp1 binding site, within the promoter region from −466 to −451, acts as a positive transcription regulatory element. These results led us to examine how Sp1 and/or Sp3 act on these GC boxes during aging in cultured human diploid fibroblasts. METHODOLOGY/PRINCIPAL FINDINGS: Mutagenesis studies revealed that GC-I, II and IV, especially GC-II, are essential for p16 (INK4a) gene expression in senescent cells. Electrophoretic mobility shift assays (EMSA) and ChIP assays demonstrated that both Sp1 and Sp3 bind to these elements and the binding activity is enhanced in senescent cells. Ectopic overexpression of Sp1, but not Sp3, induced the transcription of p16 (INK4a). Both Sp1 RNAi and Mithramycin, a DNA intercalating agent that interferes with Sp1 and Sp3 binding activities, reduced p16 (INK4a) gene expression. In addition, the enhanced binding of Sp1 to p16 (INK4a) promoter during cellular senescence appeared to be the result of increased Sp1 binding affinity, not an alteration in Sp1 protein level. CONCLUSIONS/SIGNIFICANCE: All these results suggest that GC- II is the key site for Sp1 binding and increase of Sp1 binding activity rather than protein levels contributes to the induction of p16 (INK4a) expression during cell aging

    NAD-Independent L-Lactate Dehydrogenase Is Required for L-Lactate Utilization in Pseudomonas stutzeri SDM

    Get PDF
    BACKGROUND: Various Pseudomonas strains can use L-lactate as their sole carbon source for growth. However, the L-lactate-utilizing enzymes in Pseudomonas have never been identified and further studied. METHODOLOGY/PRINCIPAL FINDINGS: An NAD-independent L-lactate dehydrogenase (L-iLDH) was purified from the membrane fraction of Pseudomonas stutzeri SDM. The enzyme catalyzes the oxidation of L-lactate to pyruvate by using FMN as cofactor. After cloning its encoding gene (lldD), L-iLDH was successfully expressed, purified from a recombinant Escherichia coli strain, and characterized. An lldD mutant of P. stutzeri SDM was constructed by gene knockout technology. This mutant was unable to grow on L-lactate, but retained the ability to grow on pyruvate. CONCLUSIONS/SIGNIFICANCE: It is proposed that L-iLDH plays an indispensable function in Pseudomonas L-lactate utilization by catalyzing the conversion of L-lactate into pyruvate

    Real time simulation of matrix converter drives

    No full text
    corecore