8,041 research outputs found
Quantitative genetic analysis of internalising and externalising problems in a large sample of 3-year-old twins
Wireless Tissue Palpation for Intraoperative Detection of Lumps in the Soft Tissue
In an open surgery, identification of precise margins for curative tissue resection is performed by manual palpation. This is not the case for minimally invasive and robotic procedures, where tactile feedback is either distorted or not available. In this paper, we introduce the concept of intraoperative wireless tissue palpation. The wireless palpation probe (WPP) is a cylindrical device (15 mm in diameter, 60 mm in length) that can be deployed through a trocar incision and directly controlled by the surgeon to create a volumetric stiffness distribution map of the region of interest. This map can then be used to guide the tissue resection to minimize healthy tissue loss. The wireless operation prevents the need for a dedicated port and reduces the chance of instrument clashing in the operating field. The WPP is able to measure in real time the indentation pressure with a sensitivity of 34 Pa, the indentation depth with an accuracy of 0.68 mm, and the probe position with a maximum error of 11.3 mm in a tridimensional workspace. The WPP was assessed on the benchtop in detecting the local stiffness of two different silicone tissue simulators (elastic modulus ranging from 45 to 220 kPa), showing a maximum relative error below 5%. Then, in vivo trials were aimed to identify an agar-gel lump injected into a porcine liver and to assess the device usability within the frame of a laparoscopic procedure. The stiffness map created intraoperatively by the WPP was compared with a map generated ex vivo by a standard uniaxial material tester, showing less than 8% local stiffness error at the site of the lump
Estimation of Dietary Iron Bioavailability from Food Iron Intake and Iron Status
Currently there are no satisfactory methods for estimating dietary iron absorption (bioavailability) at a population level, but this is essential for deriving dietary reference values using the factorial approach. The aim of this work was to develop a novel approach for estimating dietary iron absorption using a population sample from a sub-section of the UK National Diet and Nutrition Survey (NDNS). Data were analyzed in 873 subjects from the 2000–2001 adult cohort of the NDNS, for whom both dietary intake data and hematological measures (hemoglobin and serum ferritin (SF) concentrations) were available. There were 495 men aged 19–64 y (mean age 42.7±12.1 y) and 378 pre-menopausal women (mean age 35.7±8.2 y). Individual dietary iron requirements were estimated using the Institute of Medicine calculations. A full probability approach was then applied to estimate the prevalence of dietary intakes that were insufficient to meet the needs of the men and women separately, based on their estimated daily iron intake and a series of absorption values ranging from 1–40%. The prevalence of SF concentrations below selected cut-off values (indicating that absorption was not high enough to maintain iron stores) was derived from individual SF concentrations. An estimate of dietary iron absorption required to maintain specified SF values was then calculated by matching the observed prevalence of insufficiency with the prevalence predicted for the series of absorption estimates. Mean daily dietary iron intakes were 13.5 mg for men and 9.8 mg for women. Mean calculated dietary absorption was 8% in men (50th percentile for SF 85 µg/L) and 17% in women (50th percentile for SF 38 µg/L). At a ferritin level of 45 µg/L estimated absorption was similar in men (14%) and women (13%). This new method can be used to calculate dietary iron absorption at a population level using data describing total iron intake and SF concentration
A Femtosecond Neutron Source
The possibility to use the ultrashort ion bunches produced by circularly
polarized laser pulses to drive a source of fusion neutrons with sub-optical
cycle duration is discussed. A two-side irradiation of a thin foil deuterated
target produces two countermoving ion bunches, whose collision leads to an
ultrashort neutron burst. Using particle-in-cell simulations and analytical
modeling, it is evaluated that, for intensities of a few ,
more than neutrons per Joule may be produced within a time shorter than
one femtosecond. Another scheme based on a layered deuterium-tritium target is
outlined.Comment: 15 pages, 3 figure
The one-loop six-dimensional hexagon integral and its relation to MHV amplitudes in N=4 SYM
We provide an analytic formula for the (rescaled) one-loop scalar hexagon
integral with all external legs massless, in terms of classical
polylogarithms. We show that this integral is closely connected to two
integrals appearing in one- and two-loop amplitudes in planar
super-Yang-Mills theory, and . The derivative of
with respect to one of the conformal invariants yields
, while another first-order differential operator applied to
yields . We also introduce some kinematic
variables that rationalize the arguments of the polylogarithms, making it easy
to verify the latter differential equation. We also give a further example of a
six-dimensional integral relevant for amplitudes in
super-Yang-Mills.Comment: 18 pages, 2 figure
Two-loop Yang-Mills diagrams from superstring amplitudes
Starting from the superstring amplitude describing interactions among
D-branes with a constant world-volume field strength, we present a detailed
analysis of how the open string degeneration limits reproduce the corresponding
field theory Feynman diagrams. A key ingredient in the string construction is
represented by the twisted (Prym) super differentials, as their periods encode
the information about the background field. We provide an efficient method to
calculate perturbatively the determinant of the twisted period matrix in terms
of sets of super-moduli appropriate to the degeneration limits. Using this
result we show that there is a precise one-to-one correspondence between the
degeneration of different factors in the superstring amplitudes and
one-particle irreducible Feynman diagrams capturing the gauge theory effective
action at the two-loop level.Comment: 42 pages plus appendices, 10 figure
Lateral specialization in unilateral spatial neglect : a cognitive robotics model
In this paper, we present the experimental results of an embodied cognitive robotic approach for modelling the human cognitive deficit known as unilateral spatial neglect (USN). To this end, we introduce an artificial neural network architecture designed and trained to control the spatial attentional focus of the iCub robotic platform. Like the human brain, the architecture is divided into two hemispheres and it incorporates bio-inspired plasticity mechanisms, which allow the development of the phenomenon of the specialization of the right hemisphere for spatial attention. In this study, we validate the model by replicating a previous experiment with human patients affected by the USN and numerical results show that the robot mimics the behaviours previously exhibited by humans. We also simulated recovery after the damage to compare the performance of each of the two hemispheres as additional validation of the model. Finally, we highlight some possible advantages of modelling cognitive dysfunctions of the human brain by means of robotic platforms, which can supplement traditional approaches for studying spatial impairments in humans
Lepton flavour violation in the MSSM
We derive new constraints on the quantities delta_{XY}^{ij}, X,Y=L,R, which
parametrise the flavour-off-diagonal terms of the charged slepton mass matrix
in the MSSM. Considering mass and anomalous magnetic moment of the electron we
obtain the bound |delta^{13}_{LL} delta^{13}_{RR}|<0.1 for tan beta=50, which
involves the poorly constrained element delta^{13}_{RR}. We improve the
predictions for the decays tau -> mu gamma, tau -> e gamma and mu -> e gamma by
including two-loop corrections which are enhanced if tan beta is large. The
finite renormalisation of the PMNS matrix from soft SUSY-breaking terms is
derived and applied to the charged-Higgs-lepton vertex. We find that the
experimental bound on BR(tau -> e gamma) severely limits the size of the MSSM
loop correction to the PMNS element U_{e3}, which is important for the proper
interpretation of a future U_{e3} measurement. Subsequently we confront our new
values for delta^{ij}_{LL} with a GUT analysis. Further, we include the effects
of dimension-5 Yukawa terms, which are needed to fix the Yukawa unification of
the first two generations. If universal supersymmetry breaking occurs above the
GUT scale, we find the flavour structure of the dimension-5 Yukawa couplings
tightly constrained by mu -> e gamma.Comment: 37 pages, 15 figures; typo in Equation (35) and (49) correcte
On form factors in N=4 sym
In this paper we study the form factors for the half-BPS operators
and the stress tensor supermultiplet
current up to the second order of perturbation theory and for the
Konishi operator at first order of perturbation theory in
SYM theory at weak coupling. For all the objects we observe the
exponentiation of the IR divergences with two anomalous dimensions: the cusp
anomalous dimension and the collinear anomalous dimension. For the IR finite
parts we obtain a similar situation as for the gluon scattering amplitudes,
namely, apart from the case of and the finite part has
some remainder function which we calculate up to the second order. It involves
the generalized Goncharov polylogarithms of several variables. All the answers
are expressed through the integrals related to the dual conformal invariant
ones which might be a signal of integrable structure standing behind the form
factors.Comment: 35 pages, 7 figures, LATEX2
- …
