52 research outputs found
Research priorities for the COVID-19 pandemic and beyond: A call to action for psychological science
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that has caused the coronavirus disease 2019 (COVID-19) pandemic represents the greatest international biopsychosocial emergency the world has faced for a century, and psychological science has an integral role to offer in helping societies recover. The aim of this paper is to set out the shorter- and longer-term priorities for research in psychological science that will (a) frame the breadth and scope of potential contributions from across the discipline; (b) enable researchers to focus their resources on gaps in knowledge; and (c) help funders and policymakers make informed decisions about future research priorities in order to best meet the needs of societies as they emerge from the acute phase of the pandemic. The research priorities were informed by an expert panel convened by the British Psychological Society that reflects the breadth of the discipline; a wider advisory panel with international input; and a survey of 539 psychological scientists conducted early in May 2020. The most pressing need is to research the negative biopsychosocial impacts of the COVID-19 pandemic to facilitate immediate and longer-term recovery, not only in relation to mental health, but also in relation to behaviour change and adherence, work, education, children and families, physical health and the brain, and social cohesion and connectedness. We call on psychological scientists to work collaboratively with other scientists and stakeholders, establish consortia, and develop innovative research methods while maintaining high-quality, open, and rigorous research standards
Enamel crystals of mice susceptible or resistant to dental fluorosis: an AFM study
Objective: This study aimed to assess the overall apatite crystals profile in the enamel matrix of mice susceptible (A/J strain) or resistant (129P3/J strain) to dental fluorosis through analyses by atomic force microscopy (AFM). Material and Methods: Samples from the enamel matrix in the early stages of secretion and maturation were obtained from the incisors of mice from both strains. All detectable traces of matrix protein were removed from the samples by a sequential extraction procedure. The purified crystals (n=13 per strain) were analyzed qualitatively in the AFM. Surface roughness profile (Ra) was measured. Results: The mean (±SD) Ra of the crystals of A/J strain (0.58±0.15 nm) was lower than the one found for the 129P3/J strain (0.66±0.21 nm) but the difference did not reach statistical significance (t=1.187, p=0.247). Crystals of the 129P3/J strain (70.42±6.79 nm) were found to be significantly narrower (t=4.013, p=0.0013) than the same parameter measured for the A/J strain (90.42±15.86 nm). Conclusion: enamel crystals of the 129P3/J strain are narrower, which is indicative of slower crystal growth and could interfere in the occurrence of dental fluorosis
A prospective investigation of rumination and executive control in predicting overgeneral autobiographical memory in adolescence
The CaR-FA-X model (Williams et al., 2007), or capture and rumination (CaR), functional avoidance (FA) and impaired executive control (X), is a model of overgeneral autobiographical memory. Two mechanisms of the model, rumination and executive control were examined in isolation and in interaction to investigate overgeneral autobiographical memory over time. Method: Across two time points, six months apart, a total of 149 adolescents (13-16 years) completed a minimal instruction autobiographical memory test, a measure of executive control with emotional and non-emotional stimuli, and measures of brooding rumination and reflective pondering. Results: It was found that executive control for emotional information was negatively associated with OGM, but only when reflective pondering levels were high. Conclusion: In the context of higher levels of reflective pondering, greater switch costs (i.e. lower executive control) when processing emotional information predict a decrease in OGM over time
Next-gen sequencing identifies non-coding variation disrupting miRNA-binding sites in neurological disorders
Understanding the genetic factors underlying neurodevelopmental and neuropsychiatric disorders is a major challenge given their prevalence and potential severity for quality of life. While large-scale genomic screens have made major advances in this area, for many disorders the genetic underpinnings are complex and poorly understood. To date the field has focused predominantly on protein coding variation, but given the importance of tightly controlled gene expression for normal brain development and disorder, variation that affects non-coding regulatory regions of the genome is likely to play an important role in these phenotypes. Herein we show the importance of 3 prime untranslated region (3'UTR) non-coding regulatory variants across neurodevelopmental and neuropsychiatric disorders. We devised a pipeline for identifying and functionally validating putatively pathogenic variants from next generation sequencing (NGS) data. We applied this pipeline to a cohort of children with severe specific language impairment (SLI) and identified a functional, SLI-associated variant affecting gene regulation in cells and post-mortem human brain. This variant and the affected gene (ARHGEF39) represent new putative risk factors for SLI. Furthermore, we identified 3'UTR regulatory variants across autism, schizophrenia and bipolar disorder NGS cohorts demonstrating their impact on neurodevelopmental and neuropsychiatric disorders. Our findings show the importance of investigating non-coding regulatory variants when determining risk factors contributing to neurodevelopmental and neuropsychiatric disorders. In the future, integration of such regulatory variation with protein coding changes will be essential for uncovering the genetic causes of complex neurological disorders and the fundamental mechanisms underlying health and disease
Axial periodicity in periodontal collagens - Human periodontal-ligament and gingival connective-tissue collagen-fibers possess a dermis-like D-period
Skin tendon differences in collagen d-period are not geometric or stretch-related artifacts
Scanning probe microscopy of collagen I and pN-collagen I assemblies and the relevance to scanning tunnelling microscopy contrast generation in proteins
- …
