152 research outputs found
Liver-Targeting of Interferon-Alpha with Tissue-Specific Domain Antibodies
PMCID: PMC3581439This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Current worldwide nuclear cardiology practices and radiation exposure: results from the 65 country IAEA Nuclear Cardiology Protocols Cross-Sectional Study (INCAPS).
Genome-wide association analysis identifies six new loci associated with forced vital capacity
Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10−8) with FVC in or near EFEMP1, BMP6, MIR129-2–HSD17B12, PRDM11, WWOX and KCNJ2. Two loci previously associated with spirometric measures (GSTCD and PTCH1) were related to FVC. Newly implicated regions were followed up in samples from African-American, Korean, Chinese and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and the pathogenesis of restrictive lung disease
Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.
Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention
Systematic screening for unsafe driving due to medical conditions: Still debatable
<p>Abstract</p> <p>Background</p> <p>Assessing people's ability to drive has become a public health concern in most industrialized countries. Although age itself is not a predictive factor of an increased risk for dangerous driving, the prevalence of medical conditions that may impair driving increases with age. Because the implementation of a screening for unsafe driving due to medical conditions is a public health issue, its usefulness should be judged using standardised criteria already proposed for screening for chronic disease. The aim of this paper is to propose standardised criteria suitable to assess the scientific validity of screening for unsafe driving due to medical conditions, and identify potential issues to be clarified before screening can be implemented and effective.</p> <p>Discussion</p> <p>Using criteria developed for screening for chronic diseases and published studies on driving with medical conditions, we specify six criteria to judge the opportunity of screening for unsafe driving due to medical conditions. This adaptation was needed because of the complexity of the natural history of medical conditions and their potential consequences on driving and road safety. We then illustrate that published studies pleading for or against screening for unsafe driving due to medical conditions fail to provide the needed documentation. Individual criteria were mentioned in 3 to 72% of 36 papers pleading for or against screening. Quantitative estimates of relevant indicators were provided in at most 42% of papers, and some data, such as the definition of an appropriate unsafe driving period were never provided.</p> <p>Summary</p> <p>The standardised framework described in this paper provides a template for assessing the effectiveness (or lack of effectiveness) of proposed measures for screening for unsafe driving due to medical conditions. Even if most criteria were mentioned in the published literature pleading for or against such a screening, the failure to find quantitative and evidence-based estimates of relevant indicators provides useful insight for further research.</p
Initial Evaluation of the Effects of Aerosolized Florida Red Tide Toxins (Brevetoxins) in Persons with Asthma
Florida red tides annually occur in the Gulf of Mexico, resulting from blooms of the marine dinoflagellate Karenia brevis. K. brevis produces highly potent natural polyether toxins, known as brevetoxins, that activate voltage-sensitive sodium channels. In experimental animals, brevetoxins cause significant bronchoconstriction. A study of persons who visited the beach recreationally found a significant increase in self-reported respiratory symptoms after exposure to aerosolized Florida red tides. Anecdotal reports indicate that persons with underlying respiratory diseases may be particularly susceptible to adverse health effects from these aerosolized toxins. Fifty-nine persons with physician-diagnosed asthma were evaluated for 1 hr before and after going to the beach on days with and without Florida red tide. Study participants were evaluated with a brief symptom questionnaire, nose and throat swabs, and spirometry approved by the National Institute for Occupational Safety and Health. Environmental monitoring, water and air sampling (i.e., K. brevis, brevetoxins, and particulate size distribution), and personal monitoring (for toxins) were performed. Brevetoxin concentrations were measured by liquid chromatography mass spectrometry, high-performance liquid chromatography, and a newly developed brevetoxin enzyme-linked immunosorbent assay. Participants were significantly more likely to report respiratory symptoms after Florida red tide exposure. Participants demonstrated small but statistically significant decreases in forced expiratory volume in 1 sec, forced expiratory flow between 25 and 75%, and peak expiratory flow after exposure, particularly those regularly using asthma medications. Similar evaluation during nonexposure periods did not significantly differ. This is the first study to show objectively measurable adverse health effects from exposure to aerosolized Florida red tide toxins in persons with asthma. Future studies will examine the possible chronic effects of these toxins among persons with asthma and other chronic respiratory impairment
Successful Targeting and Disruption of an Integrated Reporter Lentivirus Using the Engineered Homing Endonuclease Y2 I-AniI
Current antiviral therapy does not cure HIV-infected individuals because the virus establishes lifelong latent infection within long-lived memory T cells as integrated HIV proviral DNA. Here, we report a new therapeutic approach that aims to cure cells of latent HIV infection by rendering latent virus incapable of replication and pathogenesis via targeted cellular mutagenesis of essential viral genes. This is achieved by using a homing endonuclease to introduce DNA double-stranded breaks (dsb) within the integrated proviral DNA, which is followed by triggering of the cellular DNA damage response and error-prone repair. To evaluate this concept, we developed an in vitro culture model of viral latency, consisting of an integrated lentiviral vector with an easily evaluated reporter system to detect targeted mutagenesis events. Using this system, we demonstrate that homing endonucleases can efficiently and selectively target an integrated reporter lentivirus within the cellular genome, leading to mutation in the proviral DNA and loss of reporter gene expression. This new technology offers the possibility of selectively disabling integrated HIV provirus within latently infected cells
The Role of Demography and Markets in Determining Deforestation Rates Near Ranomafana National Park, Madagascar
The highland forests of Madagascar are home to some of the world's most unique and diverse flora and fauna and to some of its poorest people. This juxtaposition of poverty and biodiversity is continually reinforced by rapid population growth, which results in increasing pressure on the remaining forest habitat in the highland region, and the biodiversity therein. Here we derive a mathematical expression for the subsistence of households to assess the role of markets and household demography on deforestation near Ranomafana National Park. In villages closest to urban rice markets, households were likely to clear less land than our model predicted, presumably because they were purchasing food at market. This effect was offset by the large number of migrant households who cleared significantly more land between 1989–2003 than did residents throughout the region. Deforestation by migrant households typically occurred after a mean time lag of 9 years. Analyses suggest that while local conservation efforts in Madagascar have been successful at reducing the footprint of individual households, large-scale conservation must rely on policies that can reduce the establishment of new households in remaining forested areas
Internalization of Modified Lipids by CD36 and SR-A Leads to Hepatic Inflammation and Lysosomal Cholesterol Storage in Kupffer Cells
Non-alcoholic steatohepatitis (NASH) is characterized by steatosis and inflammation, which can further progress into fibrosis and cirrhosis. Recently, we demonstrated that combined deletion of the two main scavenger receptors, CD36 and macrophage scavenger receptor 1 (MSR1), which are important for modified cholesterol-rich lipoprotein uptake, reduced NASH. The individual contributions of these receptors to NASH and the intracellular mechanisms by which they contribute to inflammation have not been established. We hypothesize that CD36 and MSR1 contribute independently to the onset of inflammation in NASH, by affecting intracellular cholesterol distribution inside Kupffer cells (KCs).Ldlr(-/-) mice were transplanted with wild-type (Wt), Cd36(-/-) or Msr1(-/-) bone marrow and fed a Western diet for 3 months. Cd36(-/-)- and Msr1(-/-)- transplanted (tp) mice showed a similar reduction in hepatic inflammation compared to Wt-tp mice. While the total amount of cholesterol inside KCs was similar in all groups, KCs of Cd36(-/-)- and Msr1(-/-)-tp mice showed increased cytoplasmic cholesterol accumulation, while Wt-tp mice showed increased lysosomal cholesterol accumulation.CD36 and MSR1 contribute similarly and independently to the progression of inflammation in NASH. One possible explanation for the inflammatory response related to expression of these receptors could be abnormal cholesterol trafficking in KCs. These data provide a new basis for prevention and treatment of NASH
Reconstruction of ancestral RNA sequences under multiple structural constraints
Abstract Background Secondary structures form the scaffold of multiple sequence alignment of non-coding RNA (ncRNA) families. An accurate reconstruction of ancestral ncRNAs must use this structural signal. However, the inference of ancestors of a single ncRNA family with a single consensus structure may bias the results towards sequences with high affinity to this structure, which are far from the true ancestors. Methods In this paper, we introduce achARNement, a maximum parsimony approach that, given two alignments of homologous ncRNA families with consensus secondary structures and a phylogenetic tree, simultaneously calculates ancestral RNA sequences for these two families. Results We test our methodology on simulated data sets, and show that achARNement outperforms classical maximum parsimony approaches in terms of accuracy, but also reduces by several orders of magnitude the number of candidate sequences. To conclude this study, we apply our algorithms on the Glm clan and the FinP-traJ clan from the Rfam database. Conclusions Our results show that our methods reconstruct small sets of high-quality candidate ancestors with better agreement to the two target structures than with classical approaches. Our program is freely available at: http://csb.cs.mcgill.ca/acharnement
- …
