231 research outputs found
Genotoxic agents promote the nuclear accumulation of annexin A2: role of annexin A2 in mitigating DNA damage
Annexin A2 is an abundant cellular protein that is mainly localized in the cytoplasm and plasma membrane, however a small population has been found in the nucleus, suggesting a nuclear function for the protein. Annexin A2 possesses a nuclear export sequence (NES) and inhibition of the NES is sufficient to cause nuclear accumulation. Here we show that annexin A2 accumulates in the nucleus in response to genotoxic agents including gamma-radiation, UV radiation, etoposide and chromium VI and that this event is mediated by the nuclear export sequence of annexin A2. Nuclear accumulation of annexin A2 is blocked by the antioxidant agent N-acetyl cysteine (NAC) and stimulated by hydrogen peroxide (H2O2), suggesting that this is a reactive oxygen species dependent event. In response to genotoxic agents, cells depleted of annexin A2 show enhanced phospho-histone H2AX and p53 levels, increased numbers of p53-binding protein 1 nuclear foci and increased levels of nuclear 8-oxo-2'-deoxyguanine, suggesting that annexin A2 plays a role in protecting DNA from damage. This is the first report showing the nuclear translocation of annexin A2 in response to genotoxic agents and its role in mitigating DNA damage.Natural Sciences and Engineering Research Council of Canada (NSERC); European Union [PCOFUND-GA-2009-246542]; Foundation for Science and Technology of Portugal; Beatrice Hunter Cancer Research Institute; Terry Fox Foundationinfo:eu-repo/semantics/publishedVersio
Effectiveness of an implementation optimisation intervention aimed at increasing parent engagement in HENRY, a childhood obesity prevention programme - the Optimising Family Engagement in HENRY (OFTEN) trial: study protocol for a randomised controlled trial
Background: Family-based interventions to prevent childhood obesity depend upon parents’ taking action to improve diet and other lifestyle behaviours in their families. Programmes that attract and retain high numbers of parents provide an enhanced opportunity to improve public health and are also likely to be more cost-effective than those that do not. We have developed a theory-informed optimisation intervention to promote parent engagement within an existing childhood obesity prevention group programme, HENRY (Health Exercise Nutrition for the Really Young). Here, we describe a proposal to evaluate the effectiveness of this optimisation intervention in regard to the engagement of parents and cost-effectiveness. Methods/design: The Optimising Family Engagement in HENRY (OFTEN) trial is a cluster randomised controlled trial being conducted across 24 local authorities (approximately 144 children’s centres) which currently deliver HENRY programmes. The primary outcome will be parental enrolment and attendance at the HENRY programme, assessed using routinely collected process data. Cost-effectiveness will be presented in terms of primary outcomes using acceptability curves and through eliciting the willingness to pay for the optimisation from HENRY commissioners. Secondary outcomes include the longitudinal impact of the optimisation, parent-reported infant intake of fruits and vegetables (as a proxy to compliance) and other parent-reported family habits and lifestyle. Discussion: This innovative trial will provide evidence on the implementation of a theory-informed optimisation intervention to promote parent engagement in HENRY, a community-based childhood obesity prevention programme. The findings will be generalisable to other interventions delivered to parents in other community-based environments. This research meets the expressed needs of commissioners, children’s centres and parents to optimise the potential impact that HENRY has on obesity prevention. A subsequent cluster randomised controlled pilot trial is planned to determine the practicality of undertaking a definitive trial to robustly evaluate the effectiveness and cost-effectiveness of the optimised intervention on childhood obesity prevention
Ionizing radiation modulates human macrophages towards a pro-inflammatory phenotype preserving their pro-invasive and pro-angiogenic capacities
In order to improve the efficacy of conventional radiotherapy, attention has been paid to immune cells, which not only modulate cancer cell response to therapy but are also highly recruited to tumours after irradiation. Particularly, the effect of ionizing radiation on macrophages, using therapeutically relevant doses, is not well understood. To evaluate how radiotherapy affects macrophage behaviour and macrophage-mediated cancer cell activity, human monocyte derived-macrophages were subjected, for a week, to cumulative ionizing radiation doses, as used during cancer treatment (2Gy/fraction/day). Irradiated macrophages remained viable and metabolically active, despite DNA damage. NF-kappaB transcription activation and increased Bcl-xL expression evidenced the promotion of pro-survival activity. A significant increase of pro-inflammatory macrophage markers CD80, CD86 and HLA-DR, but not CCR7, TNF and IL1B was observed after 10Gy cumulative doses, while anti-inflammatory markers CD163, MRC1, VCAN and IL-10 expression decreased, suggesting the modulation towards a more proinflammatory phenotype. Moreover, ionizing radiation induced macrophage morphological alterations and increased their phagocytic rate, without affecting matrix metalloproteases (MMP)2 and MMP9 activity. Importantly, irradiated macrophages promoted cancer cell-invasion and cancer cell-induced angiogenesis. Our work highlights macrophage ability to sustain cancer cell activities as a major concern that needs to be addressed to improve radiotherapy efficacy
HDAC inhibitor confers radiosensitivity to prostate stem-like cells
Background: Radiotherapy can be an effective treatment for prostate cancer, but radiorecurrent tumours do develop. Considering prostate cancer heterogeneity, we hypothesised that primitive stem-like cells may constitute the radiation-resistant fraction.
Methods: Primary cultures were derived from patients undergoing resection for prostate cancer or benign prostatic hyperplasia. After short-term culture, three populations of cells were sorted, reflecting the prostate epithelial hierarchy, namely stem-like cells (SCs, α2β1integrinhi/CD133+), transit-amplifying (TA, α2β1integrinhi/CD133−) and committed basal (CB, α2β1integrinlo) cells. Radiosensitivity was measured by colony-forming efficiency (CFE) and DNA damage by comet assay and DNA damage foci quantification. Immunofluorescence and flow cytometry were used to measure heterochromatin. The HDAC (histone deacetylase) inhibitor Trichostatin A was used as a radiosensitiser.
Results: Stem-like cells had increased CFE post irradiation compared with the more differentiated cells (TA and CB). The SC population sustained fewer lethal double-strand breaks than either TA or CB cells, which correlated with SCs being less proliferative and having increased levels of heterochromatin. Finally, treatment with an HDAC inhibitor sensitised the SCs to radiation.
Interpretation: Prostate SCs are more radioresistant than more differentiated cell populations. We suggest that the primitive cells survive radiation therapy and that pre-treatment with HDAC inhibitors may sensitise this resistant fraction
Toward an improved representation of middle atmospheric dynamics thanks to the ARISE project
This paper reviews recent progress toward understanding the dynamics of the middle atmosphere in the framework of the Atmospheric Dynamics Research InfraStructure in Europe (ARISE) initiative. The middle atmosphere, integrating the stratosphere and mesosphere, is a crucial region which influences tropospheric weather and climate. Enhancing the understanding of middle atmosphere dynamics requires improved measurement of the propagation and breaking of planetary and gravity waves originating in the lowest levels of the atmosphere. Inter-comparison studies have shown large discrepancies between observations and models, especially during unresolved disturbances such as sudden stratospheric warmings for which model accuracy is poorer due to a lack of observational constraints. Correctly predicting the variability of the middle atmosphere can lead to improvements in tropospheric weather forecasts on timescales of weeks to season. The ARISE project integrates different station networks providing observations from ground to the lower thermosphere, including the infrasound system developed for the Comprehensive Nuclear-Test-Ban Treaty verification, the Lidar Network for the Detection of Atmospheric Composition Change, complementary meteor radars, wind radiometers, ionospheric sounders and satellites. This paper presents several examples which show how multi-instrument observations can provide a better description of the vertical dynamics structure of the middle atmosphere, especially during large disturbances such as gravity waves activity and stratospheric warming events. The paper then demonstrates the interest of ARISE data in data assimilation for weather forecasting and re-analyzes the determination of dynamics evolution with climate change and the monitoring of atmospheric extreme events which have an atmospheric signature, such as thunderstorms or volcanic eruptions
A Sensitive and Quantitative Polymerase Chain Reaction-Based Cell Free In Vitro Non-Homologous End Joining Assay for Hematopoietic Stem Cells
Hematopoietic stem cells (HSCs) are responsible for sustaining hematopoietic homeostasis and regeneration after injury for the entire lifespan of an organism. Maintenance of genomic stability is crucial for the preservation of HSCs, which depends on their efficient repair of DNA damage, particularly DNA double strand breaks (DSBs). Because of the paucity of HSCs and lack of sensitive assays, directly measuring the ability of HSCs to repair DSBs has been difficult. Therefore, we developed a sensitive and quantitative cell free in vitro non-homologous end joining (NHEJ) assay using linearized plasmids as the substrates and quantitative polymerase chain reaction (qPCR) technique. This assay can sensitively detect DSB repair via NHEJ in less than 1 µg 293T cell nuclear proteins or nuclear extracts from about 5,000 to 10,000 human BM CD34+ hematopoietic cells. Using this assay, we confirmed that human bone marrow HSCs (CD34+CD38− cells) are less proficient in the repair of DSBs by NHEJ than HPCs (CD34+CD38+ cells). In contrast, mouse quiescent HSCs (Pyronin-Ylow LKS+ cells) and cycling HSCs (Pyronin-Yhi LKS+ cells) repaired the damage more efficiently than HPCs (LKS− cells). The difference in the abilities of human and mouse HSCs and HPCs to repair DSBs through NHEJ is likely attributed to their differential expression of key NHEJ DNA damage repair genes such as LIG4. These findings suggest that the qPCR-based cell free in vitro NHEJ assay can be used to sensitively measure the ability of human and mouse HSCs to repair DSBs
Protein expression based multimarker analysis of breast cancer samples
<p>Abstract</p> <p>Background</p> <p>Tissue microarray (TMA) data are commonly used to validate the prognostic accuracy of tumor markers. For example, breast cancer TMA data have led to the identification of several promising prognostic markers of survival time. Several studies have shown that TMA data can also be used to cluster patients into clinically distinct groups. Here we use breast cancer TMA data to cluster patients into distinct prognostic groups.</p> <p>Methods</p> <p>We apply weighted correlation network analysis (WGCNA) to TMA data consisting of 26 putative tumor biomarkers measured on 82 breast cancer patients. Based on this analysis we identify three groups of patients with low (5.4%), moderate (22%) and high (50%) mortality rates, respectively. We then develop a simple threshold rule using a subset of three markers (p53, Na-KATPase-β1, and TGF β receptor II) that can approximately define these mortality groups. We compare the results of this correlation network analysis with results from a standard Cox regression analysis.</p> <p>Results</p> <p>We find that the rule-based grouping variable (referred to as WGCNA*) is an independent predictor of survival time. While WGCNA* is based on protein measurements (TMA data), it validated in two independent Affymetrix microarray gene expression data (which measure mRNA abundance). We find that the WGCNA patient groups differed by 35% from mortality groups defined by a more conventional stepwise Cox regression analysis approach.</p> <p>Conclusions</p> <p>We show that correlation network methods, which are primarily used to analyze the relationships between gene products, are also useful for analyzing the relationships between patients and for defining distinct patient groups based on TMA data. We identify a rule based on three tumor markers for predicting breast cancer survival outcomes.</p
Phase IIa trial in Duchenne muscular dystrophy shows vamorolone is a first-in-class dissociative steroidal anti-inflammatory drug
\ua9 2018 The Authors We report a first-in-patient study of vamorolone, a first-in-class dissociative steroidal anti-inflammatory drug, in Duchenne muscular dystrophy. This 2-week, open-label Phase IIa multiple ascending dose study (0.25, 0.75, 2.0, and 6.0 mg/kg/day) enrolled 48 boys with Duchenne muscular dystrophy (4 to <7 years), with outcomes including clinical safety, pharmacokinetics and pharmacodynamic biomarkers. The study design included pharmacodynamic biomarkers in three contexts of use: 1. Secondary outcomes for pharmacodynamic safety (insulin resistance, adrenal suppression, bone turnover); 2. Exploratory outcomes for drug mechanism of action; 3. Exploratory outcomes for expanded pharmacodynamic safety. Vamorolone was safe and well-tolerated through the highest dose tested (6.0 mg/kg/day) and pharmacokinetics of vamorolone were similar to prednisolone. Using pharmacodynamic biomarkers, the study demonstrated improved safety of vamorolone versus glucocorticoids as shown by reduction of insulin resistance, beneficial changes in bone turnover (loss of increased bone resorption and decreased bone formation only at the highest dose level), and a reduction in adrenal suppression. Exploratory biomarkers of pharmacodynamic efficacy showed an anti-inflammatory mechanism of action and a beneficial effect on plasma membrane stability, as demonstrated by a dose-responsive decrease in serum creatine kinase activity. With an array of pre-selected biomarkers in multiple contexts of use, we demonstrate the development of the first dissociative steroid that preserves anti-inflammatory efficacy and decreases steroid-associated safety concerns. Ongoing extension studies offer the potential to bridge exploratory efficacy biomarkers to clinical outcomes
Antennal sensilla of two female anopheline sibling species with differing host ranges
BACKGROUND: Volatile odors are important sensory inputs that shape the behaviour of insects, including agricultural pests and disease vectors. Anopheles gambiae s.s. is a highly anthropophilic mosquito and is the major vector for human malaria in sub-Sahara Africa, while Anopheles quadriannulatus, largely due to its zoophilic behaviour, is considered a non-vector species in the same region. Careful studies of olfaction in these sibling species may lead to insights about the mechanisms that drive host preference behaviour. In the present study, the external anatomy of the antenna, the principle olfactory organ in the female mosquito of both species, was examined as an initial step toward more detailed comparisons. METHODS: Scanning electron and light microscopy were used to examine the antennae ultrastructures of adult female An. gambiae s.s. and An. quadriannulatus. Sensory structures, called sensilla, were categorized and counted; their distributions are reported here as well as densities calculated for each species. RESULTS: Both An. gambiae s.s. and An. quadriannulatus bear five classes of sensilla on their antennae: chaetica (bristles), trichodea (hairs), basiconica (pegs), coeloconica (pitted pegs), and ampullacea (pegs in tubes). Female An. quadriannulatus antennae have approximately one-third more sensilla, and a proportionally larger surface area, than female An. gambiae s.s. antennae. CONCLUSION: The same types of sensilla are found on the antennae of both species. While An. quadriannulatus has greater numbers of each sensilla type, sensilla densities are very similar for each species, suggesting that other factors may be more important to such olfactory-driven behaviours as host preference
High Expression of Wee1 Is Associated with Poor Disease-Free Survival in Malignant Melanoma: Potential for Targeted Therapy
Notoriously resistant malignant melanoma is one of the most increasing forms of cancer worldwide; there is thus a precarious need for new treatment options. The Wee1 kinase is a major regulator of the G2/M checkpoint, and halts the cell cycle by adding a negative phosphorylation on CDK1 (Tyr15). Additionally, Wee1 has a function in safeguarding the genome integrity during DNA synthesis. To assess the role of Wee1 in development and progression of malignant melanoma we examined its expression in a panel of paraffin-embedded patient derived tissue of benign nevi and primary- and metastatic melanomas, as well as in agarose-embedded cultured melanocytes. We found that Wee1 expression increased in the direction of malignancy, and showed a strong, positive correlation with known biomarkers involved in cell cycle regulation: Cyclin A (p<0.0001), Ki67 (p<0.0001), Cyclin D3 (p = 0.001), p21Cip1/WAF1 (p = 0.003), p53 (p = 0.025). Furthermore, high Wee1 expression was associated with thicker primary tumors (p = 0.001), ulceration (p = 0.005) and poor disease-free survival (p = 0.008). Transfections using siWee1 in metastatic melanoma cell lines; WM239WTp53, WM45.1MUTp53 and LOXWTp53, further support our hypothesis of a tumor promoting role of Wee1 in melanomas. Whereas no effect was observed in LOX cells, transfection with siWee1 led to accumulation of cells in G1/S and S phase of the cell cycle in WM239 and WM45.1 cells, respectively. Both latter cell lines displayed DNA damage and induction of apoptosis, in the absence of Wee1, indicating that the effect of silencing Wee1 may not be solely dependent of the p53 status of the cells. Together these results reveal the importance of Wee1 as a prognostic biomarker in melanomas, and indicate a potential role for targeted therapy, alone or in combination with other agents
- …
