18 research outputs found
A non-enzymatic, isothermal strand displacement and amplification assay for rapid detection of SARS-CoV-2 RNA
The current nucleic acid signal amplification methods for SARS-CoV-2 RNA detection heavily rely on the functions of biological enzymes which imposes stringent transportation and storage conditions, high cost and global supply shortages. Here, a non-enzymatic whole genome detection method based on a simple isothermal signal amplification approach is developed for rapid detection of SARS-CoV-2 RNA and potentially any types of nucleic acids regardless of their size. The assay, termed non-enzymatic isothermal strand displacement and amplification (NISDA), is able to quantify 10 RNA copies.µL−1. In 164 clinical oropharyngeal RNA samples, NISDA assay is 100 % specific, and it is 96.77% and 100% sensitive when setting up in the laboratory and hospital, respectively. The NISDA assay does not require RNA reverse-transcription step and is fast (1 month), isothermal (42 °C) and user-friendly, making it an excellent assay for broad-based testing
Protective Efficacy of Neutralizing Monoclonal Antibodies in a Nonhuman Primate Model of Ebola Hemorrhagic Fever
Ebola virus (EBOV) is the causative agent of severe hemorrhagic fever in primates, with human case fatality rates up to 90%. Today, there is neither a licensed vaccine nor a treatment available for Ebola hemorrhagic fever (EHF). Single monoclonal antibodies (MAbs) specific for Zaire ebolavirus (ZEBOV) have been successfully used in passive immunization experiments in rodent models, but have failed to protect nonhuman primates from lethal disease. In this study, we used two clones of human-mouse chimeric MAbs (ch133 and ch226) with strong neutralizing activity against ZEBOV and evaluated their protective potential in a rhesus macaque model of EHF. Reduced viral loads and partial protection were observed in animals given MAbs ch133 and ch226 combined intravenously at 24 hours before and 24 and 72 hours after challenge. MAbs circulated in the blood of a surviving animal until virus-induced IgG responses were detected. In contrast, serum MAb concentrations decreased to undetectable levels at terminal stages of disease in animals that succumbed to infection, indicating substantial consumption of these antibodies due to virus replication. Accordingly, the rapid decrease of serum MAbs was clearly associated with increased viremia in non-survivors. Our results indicate that EBOV neutralizing antibodies, particularly in combination with other therapeutic strategies, might be beneficial in reducing viral loads and prolonging disease progression during EHF
Rumination in bipolar disorder: evidence for an unquiet mind
Depression in bipolar disorder has long been thought to be a state characterized by mental inactivity. However, recent research demonstrates that patients with bipolar disorder engage in rumination, a form of self-focused repetitive cognitive activity, in depressed as well as in manic states. While rumination has long been associated with depressed states in major depressive disorder, the finding that patients with bipolar disorder ruminate in manic states is unique to bipolar disorder and challenges explanations put forward for why people ruminate. We review the research on rumination in bipolar disorder and propose that rumination in bipolar disorder, in both manic and depressed states, reflects executive dysfunction. We also review the neurobiology of bipolar disorder and recent neuroimaging studies of rumination, which is consistent with our hypothesis that the tendency to ruminate reflects executive dysfunction in bipolar disorder. Finally, we relate the neurobiology of rumination to the neurobiology of emotion regulation, which is disrupted in bipolar disorder
P2Y2 receptor activation inhibits the expression of the sodium-chloride cotransporter NCC in distal convoluted tubule cells
Malfunction of Vascular Control in Lifestyle-Related Diseases: Formation of Systemic Hemoglobin-Nitric Oxide Complex (HbNO) From Dietary Nitrite
Evaluation of the Activity of Lamivudine and Zidovudine against Ebola Virus
In the fall of 2014, an international news agency reported that patients suffering from Ebola virus disease (EVD) in Liberia were treated successfully with lamivudine, an antiviral drug used to treat human immunodeficiency virus-1 and hepatitis B virus infections. According to the report, 13 out of 15 patients treated with lamivudine survived and were declared free from Ebola virus disease. In this study, the anti-Ebola virus (EBOV) activity of lamivudine and another antiretroviral, zidovudine, were evaluated in a diverse set of cell lines against two variants of wild-type EBOV. Variable assay parameters were assessed to include different multiplicities of infection, lengths of inoculation times, and durations of dosing. At a multiplicity of infection of 1, lamivudine and zidovudine had no effect on EBOV propagation in Vero E6, Hep G2, or HeLa cells, or in primary human monocyte-derived macrophages. At a multiplicity of infection of 0.1, zidovudine demonstrated limited anti-EBOV activity in Huh 7 cells. Under certain conditions, lamivudine had low anti-EBOV activity at the maximum concentration tested (320 μM). However, lamivudine never achieved greater than 30% viral inhibition, and the activity was not consistently reproducible. Combination of lamivudine and zidovudine showed no synergistic antiviral activity. Independently, a set of in vitro experiments testing lamivudine and zidovudine for antiviral activity against an Ebola-enhanced green fluorescent protein reporter virus was performed at the Centers for Disease Control and Prevention. No antiviral activity was observed for either compound. A study evaluating the efficacy of lamivudine in a guinea pig model of EVD found no survival benefit. This lack of benefit was observed despite plasma lamivudine concentrations in guinea pig of about 4 μg/ml obtained in a separately conducted pharmacokinetics study. These studies found no evidence to support the therapeutic use of lamivudine for the treatment of EVD.</div
