32 research outputs found

    Effects of Terrestrial Buffer Zones on Amphibians on Golf Courses

    Get PDF
    A major cause of amphibian declines worldwide is habitat destruction or alteration. Public green spaces, such as golf courses and parks, could serve as safe havens to curb the effects of habitat loss if managed in ways to bolster local amphibian communities. We reared larval Blanchard's cricket frogs (Acris blanchardi) and green frogs (Rana clamitans) in golf course ponds with and without 1 m terrestrial buffer zones, and released marked cricket frog metamorphs at the golf course ponds they were reared in. Larval survival of both species was affected by the presence of a buffer zone, with increased survival for cricket frogs and decreased survival for green frogs when reared in ponds with buffer zones. No marked cricket frog juveniles were recovered at any golf course pond in the following year, suggesting that most animals died or migrated. In a separate study, we released cricket frogs in a terrestrial pen and allowed them to choose between mown and unmown grass. Cricket frogs had a greater probability of using unmown versus mown grass. Our results suggest that incorporating buffer zones around ponds can offer suitable habitat for some amphibian species and can improve the quality of the aquatic environment for some sensitive local amphibians

    Demographic Consequences of Predators on Prey: Trait and Density Mediated Effects on Mosquito Larvae in Containers

    Get PDF
    Predators may affect prey population growth and community diversity through density mediated lethal and trait mediated non-lethal effects that influence phenotypic traits of prey. We tested experimentally the roles of thinning the density of prey (lethality) in the absence of predator cues and density and trait mediated effects (lethality + intimidation) of predatory midge Corethrella appendiculata on competing native and invasive mosquito prey. Predator-mediated reductions in prey and density reductions in the absence of C. appendiculata resulted in lower percent survivorship to adulthood and estimates of the finite rate of increase (λ′) for invasive mosquito Aedes albopictus relative to that of controls. In most instances, thinning the density of prey in the absence, but not in the presence, of C. appendiculata cues resulted in lower survivorship to adulthood and λ′ for native mosquito Aedes triseriatus relative to that of controls. Together, these results suggested trait mediated effects of C. appendiculata specific to each species of mosquito prey. Release from intraspecific competition attributable to density reductions in the absence, but not in the presence, of C. appendiculata enhanced growth and lengthened adult lifespan relative to that of controls for A. albopictus but not A. triseriatus. These results show the importance of predator-mediated density and trait mediated effects on phenotypic traits and populations of invasive and native mosquitoes. Species-specific differences in the phenotypic responses of prey may be due, in part, to longer evolutionary history of C. appendiculata with A. triseriatus than A. albopictus

    Are oral deformities in tadpoles accurate indicators of anuran chytridiomycosis?

    No full text
    We evaluated the use of oral deformities as reliable proxies for determining Batrachochytrium dendrobatidis (Bd) infection in tadpoles of six anuran species of the Atlantic Forest in southeastern Brazil. We examined oral discs of 2156 tadpoles of six species of anurans collected in 2016: Aplastodiscus albosignatus, Boana albopunctata, Boana faber, Scinax hayii, Crossodactylus caramaschii, and Physalaemus cuvieri. Three oral deformities were recognized: lack of keratinization only in upper and/or lower jaw sheaths, lack of keratinization only in upper or lower tooth rows, and both deformities together. A subsample composed of all the individuals possessing oral deformities (N = 195) plus randomly selected individuals without oral deformities (N = 184) were tested for Bd via qPCR. Oral deformities were observed in all six species, but only five were infected with Bd. Since we found that dekeratinization of tooth rows was not associated with the presence of Bd in any of the studied species we used a new proxy (jaw sheaths dekeratinization with or without dekeratinization in tooth rows: JSD-proxy) for Bd detection. Our results showed a nonrandom relationship between Bd infection and JSD-proxy in three species of the family Hylidae. However, the use of JSD-proxy for Bd detection in these species resulted in up to 30.8% false positives and up to 29.3% false negatives. The use of the JSD-proxy in species for which no relationship was found reached 100% of false positives. We conclude that the use of oral dekeratinization as a generalized proxy for Bd detection in tadpoles should not be used as a single diagnosis technique

    Mechanistic analogy: how microcosms explain nature

    No full text
    Microcosm studies of ecological processes have been criticized for being unrealistic. However, since lack of realism is inherent to all experimental science, if lack of realism invalidates microcosm models of ecological processes, then such lack of realism must either also invalidate much of the rest of experimental ecology or its force with respect to microcosm studies must derive from some other limitation of microcosm apparatus. We believe that the logic of the microcosm program for ecological research has been misunderstood. Here, we respond to the criticism that microcosm studies play at most a heuristic role in ecology with a new account of scientific experimentation developed specifically with ecology and other environmental sciences in mind. Central to our account are the concepts of model-based reasoning and analogical inference. We find that microcosm studies are sound when they serve as models for nature and when certain properties, referred to as the essential properties, are in positive analogy. By extension, our account also justifies numerous other kinds of ecological experimentation. These results are important because reliable causal accounts of ecological processes are necessary for sound application of ecological theory to conservation and environmental science. A severe sensitivity to reliable representation of causes is the chief virtue of the microcosm approach
    corecore