12 research outputs found

    Transcriptome dynamics and molecular cross-talk between bovine oocyte and its companion cumulus cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The bi-directional communication between the oocyte and its companion cumulus cells (CCs) is crucial for development and functions of both cell types. Transcripts that are exclusively expressed either in oocytes or CCs and molecular mechanisms affected due to removal of the communication axis between the two cell types is not investigated at a larger scale. The main objectives of this study were: 1. To identify transcripts exclusively expressed either in oocyte or CCs and 2. To identify those which are differentially expressed when the oocyte is cultured with or without its companion CCs and vice versa.</p> <p>Results</p> <p>We analyzed transcriptome profile of different oocyte and CC samples using Affymetrix GeneChip Bovine Genome array containing 23000 transcripts. Out of 13162 genes detected in germinal vesicle (GV) oocytes and their companion CCs, 1516 and 2727 are exclusively expressed in oocytes and CCs, respectively, while 8919 are expressed in both. Similarly, of 13602 genes detected in metaphase II (MII) oocytes and CCs, 1423 and 3100 are exclusively expressed in oocytes and CCs, respectively, while 9079 are expressed in both. A total of 265 transcripts are differentially expressed between oocytes cultured with (OO + CCs) and without (OO - CCs) CCs, of which 217 and 48 are over expressed in the former and the later groups, respectively. Similarly, 566 transcripts are differentially expressed when CCs mature with (CCs + OO) or without (CCs - OO) their enclosed oocytes. Of these, 320 and 246 are over expressed in CCs + OO and CCs - OO, respectively.</p> <p>While oocyte specific transcripts include those involved in transcription (<it>IRF6, POU5F1, MYF5, MED18</it>), translation (<it>EIF2AK1, EIF4ENIF1</it>) and CCs specific ones include those involved in carbohydrate metabolism (<it>HYAL1, PFKL, PYGL, MPI</it>), protein metabolic processes (<it>IHH, APOA1, PLOD1</it>), steroid biosynthetic process (<it>APOA1, CYP11A1, HSD3B1, HSD3B7</it>). Similarly, while transcripts over expressed in OO + CCs are involved in carbohydrate metabolism (<it>ACO1, 2</it>), molecular transport (<it>GAPDH, GFPT1</it>) and nucleic acid metabolism (<it>CBS, NOS2</it>), those over expressed in CCs + OO are involved in cellular growth and proliferation (<it>FOS, GADD45A</it>), cell cycle (<it>HAS2, VEGFA</it>), cellular development (<it>AMD1, AURKA, DPP4</it>) and gene expression (<it>FOSB, TGFB2</it>).</p> <p>Conclusion</p> <p>In conclusion, this study has generated large scale gene expression data from different oocyte and CCs samples that would provide insights into gene functions and interactions within and across different pathways that are involved in the maturation of bovine oocytes. Moreover, the presence or absence of oocyte and CC factors during bovine oocyte maturation can have a profound effect on transcript abundance of each cell types, thereby showing the prevailing molecular cross-talk between oocytes and their corresponding CCs.</p

    Association of creatin kinase B and peroxiredoxin 2 expression with age and embryo quality in cumulus cells

    No full text
    The purpose of this study was to identify age-related oocyte or embryo markers suitable for non-invasive analysis, as women over 38 years of age experience diminished pregnancy and ovulation rates. We used real-time quantitative PCR to examine the gene expression profiles in cumulus cells acquired from older and younger age groups. We selected 11 genes involved in three functions that directly affect cellular aging: cell cycle control, apoptosis, and metabolism. CKB and PRDX2 were up-regulated in women older than 38 years, and the expression of these genes in cumulus cells was associated with embryo quality. In good-quality embryos, CKB expression was higher in the cumulus cells acquired from both older and younger age groups than in poor-quality embryos. These potential relationships among cumulus cell gene expression, oocyte quality, and age may expand our understanding of oogenesis and embryo development. CKB and PRDX2 may serve as biomarkers or therapeutic targets for the developmental potential of oocytes

    Cold-loving microbes, plants, and animals - Fundamental and applied aspects

    No full text
    Microorganisms, plants, and animals have successfully colonized cold environments, which represent the majority of the biosphere on Earth. They have evolved special mechanisms to overcome the life-endangering influence of low temperature and to survive freezing. Cold adaptation includes a complex range of structural and functional adaptations at the level of all cellular constituents, such as membranes, proteins, metabolic activity, and mechanisms to avoid the destructive effect of intracellular ice formation. These strategies offer multiple biotechnological applications of cold-adapted organisms and/or their products in various fields. In this review, we describe the mechanisms of microorganisms, plants, and animals to cope with the cold and the resulting biotechnological perspectives
    corecore