76 research outputs found
Transcriptional regulation of Saccharomyces cerevisiaeCYS3 encoding cystathionine γ-lyase
In studying the regulation of GSH11, the structural gene of the high-affinity glutathione transporter (GSH-P1) in Saccharomyces cerevisiae, a cis-acting cysteine responsive element, CCGCCACAC (CCG motif), was detected. Like GSH-P1, the cystathionine γ-lyase encoded by CYS3 is induced by sulfur starvation and repressed by addition of cysteine to the growth medium. We detected a CCG motif (−311 to −303) and a CGC motif (CGCCACAC; −193 to −186), which is one base shorter than the CCG motif, in the 5′-upstream region of CYS3. One copy of the centromere determining element 1, CDE1 (TCACGTGA; −217 to −210), being responsible for regulation of the sulfate assimilation pathway genes, was also detected. We tested the roles of these three elements in the regulation of CYS3. Using a lacZ-reporter assay system, we found that the CCG/CGC motif is required for activation of CYS3, as well as for its repression by cysteine. In contrast, the CDE1 motif was responsible for only activation of CYS3. We also found that two transcription factors, Met4 and VDE, are responsible for activation of CYS3 through the CCG/CGC and CDE1 motifs. These observations suggest a dual regulation of CYS3 by factors that interact with the CDE1 motif and the CCG/CGC motifs
Nrt1 and Tna1-Independent Export of NAD+ Precursor Vitamins Promotes NAD+ Homeostasis and Allows Engineering of Vitamin Production
NAD+ is both a co-enzyme for hydride transfer enzymes and a
substrate of sirtuins and other NAD+ consuming enzymes.
NAD+ biosynthesis is required for two different regimens
that extend lifespan in yeast. NAD+ is synthesized from
tryptophan and the three vitamin precursors of NAD+: nicotinic
acid, nicotinamide and nicotinamide riboside. Supplementation of yeast cells
with NAD+ precursors increases intracellular
NAD+ levels and extends replicative lifespan. Here we show
that both nicotinamide riboside and nicotinic acid are not only vitamins but are
also exported metabolites. We found that the deletion of the nicotinamide
riboside transporter, Nrt1, leads to increased export of nicotinamide riboside.
This discovery was exploited to engineer a strain to produce high levels of
extracellular nicotinamide riboside, which was recovered in purified form. We
further demonstrate that extracellular nicotinamide is readily converted to
extracellular nicotinic acid in a manner that requires intracellular
nicotinamidase activity. Like nicotinamide riboside, export of nicotinic acid is
elevated by the deletion of the nicotinic acid transporter, Tna1. The data
indicate that NAD+ metabolism has a critical extracellular
element in the yeast system and suggest that cells regulate intracellular
NAD+ metabolism by balancing import and export of
NAD+ precursor vitamins
20-Year Risks of Breast-Cancer Recurrence after Stopping Endocrine Therapy at 5 Years
The administration of endocrine therapy for 5 years substantially reduces recurrence rates during and after treatment in women with early-stage, estrogen-receptor (ER)-positive breast cancer. Extending such therapy beyond 5 years offers further protection but has additional side effects. Obtaining data on the absolute risk of subsequent distant recurrence if therapy stops at 5 years could help determine whether to extend treatment
Impact of Meyerozyma guilliermondii isolated from chickens against Eimeria sp. protozoan, an in vitro analysis
Isolation and functional characterization of a high affinity urea transporter from roots of Zea mays
- …
