11 research outputs found

    Application of a low molecular weight antifungal protein from Penicillium chrysogenum

    No full text
    PAF, a small antifungal protein from Penicillium chrysogenum, inhibits the growth of several pathogenic filamentous fungi, including members of the Aspergillus genus. PAF has been proven to have no toxic effects in vivo in mice by intranasal application. To test its efficacy against invasive pulmonary aspergillosis (IPA), experiments were carried out in mice suffering from IPA. Adult mice were immunosuppressed and then infected with Aspergillus fumigatus. After stable infection, the animals were inoculated with PAF intranasally at a concentration of 2.7 mg/kg twice per day. At this concentration—which is highly toxic in vitro to A. fumigatus—the mortality of the animals was slightly delayed but finally all animals died. Histological examinations revealed massive fungal infections in the lungs of both PAF-treated and untreated animal groups. Because intranasally administered PAF was unable to overcome IPA, modified and combined therapies were introduced. The intraperitoneal application of PAF in animals with IPA prolonged the survival of the animals only 1 day. Similar results were obtained with amphotericin B (AMB), with PAF and AMB being equally effective. Combined therapy with AMB and PAF—which are synergistic in vitro—was found to be more effective than either AMB or PAF treatment alone. As no toxic effects of PAF in mammals have been described thus far, and, moreover, there are so far no A. fumigatus strains with reported inherent or acquired PAF resistance, it is worth carrying out further studies to introduce PAF as a potential antifungal drug in human therapy

    Interactions of Posaconazole and Flucytosine against Cryptococcus neoformans

    No full text
    A checkerboard methodology, based on standardized methods proposed by the National Committee for Clinical Laboratory Standards for broth microdilution antifungal susceptibility testing, was applied to study the in vitro interactions of flucytosine (FC) and posaconazole (SCH 56592) (FC-SCH) against 15 isolates of Cryptococcus neoformans. Synergy, defined as a fractional inhibitory concentration (FIC) index of <0.50, was observed for 33% of the isolates tested. When synergy was not achieved, there was still a decrease in the MIC of one or both drugs when they were used in combination. Antagonism, defined as a FIC of >4.0, was not observed. The in vitro efficacy of combined therapy was confirmed by quantitative determination of the CFU of C. neoformans 486, an isolate against which the FC-SCH association yielded a synergistic interaction. To investigate the potential beneficial effects of this combination therapy in vivo, we established two experimental murine models of cryptococcosis by intracranial or intravenous injection of cells of C. neoformans 486. At 1 day postinfection, the mice were randomized into different treatment groups. One group each received each drug alone, and one group received the drugs in combination. While combination therapy was not found to be significantly more effective than each single drug in terms of survival, tissue burden experiments confirmed the potentiation of antifungal activity with the combination. Our study demonstrates that SCH and FC combined are significantly more active than either drug alone against C. neoformans in vitro as well in vivo. These findings suggest that this therapeutic approach could be useful in the treatment of cryptococcal infections

    Pharmacokinetics and Pharmacodynamics of Antifungals in Children and Their Clinical Implications

    No full text
    Invasive fungal disease (IFD) remains life threatening in premature infants and immunocompromised children despite the recent development of new antifungal agents. Optimal dosing of antifungals is one of the few factors clinicians can control to improve outcomes of IFD. However, dosing in children cannot be extrapolated from adult data because IFD pathophysiology, immune response, and drug disposition differ from adults. We critically examined the literature on pharmacokinetics (PK) and pharmacodynamics (PD) of antifungal agents and highlight recent developments in treating pediatric IFD. To match adult exposure in pediatric patients, dosing adjustment is necessary for almost all antifungals. In young infants, the maturation of renal and metabolic functions occurs rapidly and can significantly influence drug exposure. Fluconazole clearance doubles from birth to 28 days of life and, beyond the neonatal period, agents such as fluconazole, voriconazole, and micafungin require higher dosing than in adults because of faster clearance in children. As a result, dosing recommendations are specific to bracketed ranges of age. PD principles of antifungals mostly rely on in vitro and in vivo models but very few PD studies specifically address IFD in children. The exposure-response relationship may differ in younger children compared with adults, especially in infants with invasive candidiasis who are at higher risk of disseminated disease and meningoencephalitis, and by extension severe neurodevelopmental impairment. Micafungin is the only antifungal agent for which a specific target of exposure was proposed based on a neonatal hematogenous Candida meningoencephalitis animal model. In this review, we found that pediatric data on drug disposition of newer triazoles and echinocandins are lacking, dosing of older antifungals such as fluconazole and amphotericin B products still need optimization in young infants, and that target PK/PD indices need to be clinically validated for almost all antifungals in children. A better understanding of age-specific PK and PD of new antifungals in infants and children will help improve clinical outcomes of IFD by informing dosing and identifying future research areas
    corecore