29 research outputs found
Risk-taking in disorders of natural and drug rewards: neural correlates and effects of probability, valence, and magnitude.
Pathological behaviors toward drugs and food rewards have underlying commonalities. Risk-taking has a fourfold pattern varying as a function of probability and valence leading to the nonlinearity of probability weighting with overweighting of small probabilities and underweighting of large probabilities. Here we assess these influences on risk-taking in patients with pathological behaviors toward drug and food rewards and examine structural neural correlates of nonlinearity of probability weighting in healthy volunteers. In the anticipation of rewards, subjects with binge eating disorder show greater risk-taking, similar to substance-use disorders. Methamphetamine-dependent subjects had greater nonlinearity of probability weighting along with impaired subjective discrimination of probability and reward magnitude. Ex-smokers also had lower risk-taking to rewards compared with non-smokers. In the anticipation of losses, obesity without binge eating had a similar pattern to other substance-use disorders. Obese subjects with binge eating also have impaired discrimination of subjective value similar to that of the methamphetamine-dependent subjects. Nonlinearity of probability weighting was associated with lower gray matter volume in dorsolateral and ventromedial prefrontal cortex and orbitofrontal cortex in healthy volunteers. Our findings support a distinct subtype of binge eating disorder in obesity with similarities in risk-taking in the reward domain to substance use disorders. The results dovetail with the current approach of defining mechanistically based dimensional approaches rather than categorical approaches to psychiatric disorders. The relationship to risk probability and valence may underlie the propensity toward pathological behaviors toward different types of rewards.This is the final version. It was first published by NPG at http://www.nature.com/npp/journal/v40/n4/full/npp2014242a.htm
Increased ventral striatal volume in college-aged binge drinkers
BACKGROUND
Binge drinking is a serious public health issue associated with cognitive, physiological, and anatomical differences from healthy individuals. No studies, however, have reported subcortical grey matter differences in this population. To address this, we compared the grey matter volumes of college-age binge drinkers and healthy controls, focusing on the ventral striatum, hippocampus and amygdala.
METHOD
T1-weighted images of 19 binge drinkers and 19 healthy volunteers were analyzed using voxel-based morphometry. Structural data were also covaried with Alcohol Use Disorders Identification Test (AUDIT) scores. Cluster-extent threshold and small volume corrections were both used to analyze imaging data.
RESULTS
Binge drinkers had significantly larger ventral striatal grey matter volumes compared to controls. There were no between group differences in hippocampal or amygdalar volume. Ventral striatal, amygdalar, and hippocampal volumes were also negatively related to AUDIT scores across groups.
CONCLUSIONS
Our findings stand in contrast to the lower ventral striatal volume previously observed in more severe forms of alcohol use disorders, suggesting that college-age binge drinkers may represent a distinct population from those groups. These findings may instead represent early sequelae, compensatory effects of repeated binge and withdrawal, or an endophenotypic risk factor
Neuromarketing and consumer neuroscience:contributions to neurology
Background: 'Neuromarketing' is a term that has often been used in the media in recent years. These public discussions have generally centered around potential ethical aspects and the public fear of negative consequences for society in general, and consumers in particular. However, positive contributions to the scientific discourse from developing a biological model that tries to explain context-situated human behavior such as consumption have often been neglected. We argue for a differentiated terminology, naming commercial applications of neuroscientific methods 'neuromarketing' and scientific ones 'consumer neuroscience'. While marketing scholars have eagerly integrated neuroscientific evidence into their theoretical framework, neurology has only recently started to draw its attention to the results of consumer neuroscience.Discussion: In this paper we address key research topics of consumer neuroscience that we think are of interest for neurologists; namely the reward system, trust and ethical issues. We argue that there are overlapping research topics in neurology and consumer neuroscience where both sides can profit from collaboration. Further, neurologists joining the public discussion of ethical issues surrounding neuromarketing and consumer neuroscience could contribute standards and experience gained in clinical research.Summary: We identify the following areas where consumer neuroscience could contribute to the field of neurology:. First, studies using game paradigms could help to gain further insights into the underlying pathophysiology of pathological gambling in Parkinson's disease, frontotemporal dementia, epilepsy, and Huntington's disease.Second, we identify compulsive buying as a common interest in neurology and consumer neuroscience. Paradigms commonly used in consumer neuroscience could be applied to patients suffering from Parkinson's disease and frontotemporal dementia to advance knowledge of this important behavioral symptom.Third, trust research in the medical context lacks empirical behavioral and neuroscientific evidence. Neurologists entering this field of research could profit from the extensive knowledge of the biological foundation of trust that scientists in economically-orientated neurosciences have gained.Fourth, neurologists could contribute significantly to the ethical debate about invasive methods in neuromarketing and consumer neuroscience. Further, neurologists should investigate biological and behavioral reactions of neurological patients to marketing and advertising measures, as they could show special consumer vulnerability and be subject to target marketing
Neuropsychological features of patients with Parkinson’s disease and impulse control disorders
Impaired Flexible Reward-Based Decision-Making in Binge Eating Disorder: Evidence from Computational Modeling and Functional Neuroimaging
Despite its clinical relevance and the recent recognition as a diagnostic category in the DSM-5, binge eating disorder (BED) has rarely been investigated from a cognitive neuroscientific perspective targeting a more precise neurocognitive profiling of the disorder. BED patients suffer from a lack of behavioral control during recurrent binge eating episodes and thus fail to adapt their behavior in the face of negative consequences, eg, high risk for obesity. To examine impairments in flexible reward-based decision-making, we exposed BED patients (n=22) and matched healthy individuals (n=22) to a reward-guided decision-making task during functional resonance imaging (fMRI). Performing fMRI analysis informed via computational modeling of choice behavior, we were able to identify specific signatures of altered decision-making in BED. On the behavioral level, we observed impaired behavioral adaptation in BED, which was due to enhanced switching behavior, a putative deficit in striking a balance between exploration and exploitation appropriately. This was accompanied by diminished activation related to exploratory decisions in the anterior insula/ventro-lateral prefrontal cortex. Moreover, although so-called model-free reward prediction errors remained intact, representation of ventro-medial prefrontal learning signatures, incorporating inference on unchosen options, was reduced in BED, which was associated with successful decision-making in the task. On the basis of a computational psychiatry account, the presented findings contribute to defining a neurocognitive phenotype of BED
Relations among Delay Discounting, Addictions, and Money Mismanagement: Implications and Future Directions
Targeting G-quadruplex DNA as cognitive function therapy for ATR-X syndrome
難治性疾患「ATR-X症候群」の治療に新たな光 --重度知的障がいに対する新しい治療薬候補の発見--. 京都大学プレスリリース. 2018-05-22.Alpha-thalassemia X-linked intellectual disability (ATR-X) syndrome is caused by mutations in ATRX, which encodes a chromatin-remodeling protein. Genome-wide analyses in mouse and human cells indicate that ATRX tends to bind to G-rich sequences with a high potential to form G-quadruplexes. Here, we report that Atrx mutation induces aberrant upregulation of Xlr3b expression in the mouse brain, an outcome associated with neuronal pathogenesis displayed by ATR-X model mice. We show that ATRX normally binds to G-quadruplexes in CpG islands of the imprinted Xlr3b gene, regulating its expression by recruiting DNA methyltransferases. Xlr3b binds to dendritic mRNAs, and its overexpression inhibits dendritic transport of the mRNA encoding CaMKII-α, promoting synaptic dysfunction. Notably, treatment with 5-ALA, which is converted into G-quadruplex-binding metabolites, reduces RNA polymerase II recruitment and represses Xlr3b transcription in ATR-X model mice. 5-ALA treatment also rescues decreased synaptic plasticity and cognitive deficits seen in ATR-X model mice. Our findings suggest a potential therapeutic strategy to target G-quadruplexes and decrease cognitive impairment associated with ATR-X syndrome
