1,571 research outputs found
Detection of Lyman-alpha Emitting Galaxies at Redshift z=4.55
Studies of the formation and early history of galaxies have been hampered by
the difficulties inherent in detecting faint galaxy populations at high
redshift. As a consequence, observations at the highest redshifts (3.5 < z < 5)
have been restricted to objects that are intrinsically bright. These include
quasars, radio galaxies, and some Ly alpha-emitting objects that are very close
to (within ~10 kpc) -- and appear to be physically associated with -- quasars.
But the extremely energetic processes which make these objects easy to detect
also make them unrepresentative of normal (field) galaxies. Here we report the
discovery using Keck spectroscopic observations of two Ly alpha-emitting
galaxies at redshift z = 4.55, which are sufficiently far from the nearest
quasar (~700 kpc) that radiation from the quasar is unlikely to provide the
excitation source of the Ly alpha emission. Instead, these galaxies appear to
be undergoing their first burst of star formation, at a time when the Universe
was less than one billion years old.Comment: 8 pages, 1 landscape table, and 3 PostScript figures. Uses
aaspp4.sty, flushrt.sty, aj_pt4.sty, overcite.sty (style macros available
from xxx.lanl.gov) Figure 1 is bitmapped to 100 dpi. The original PostScript
version of Fig. 1 is available via anonymous ftp to
ftp://hubble.ifa.hawaii.edu/pub/preprints To appear in Natur
Measurement of the branching ratio of pi^0 -> e^+e^- using K_L -> 3 pi^0 decays in flight
The branching ratio of the rare decay pi^0 -> e^+e^- has been measured in
E799-II, a rare kaon decay experiment using the KTeV detector at Fermilab. The
pi^0's were produced in fully-reconstructed K_L -> 3 pi^0 decays in flight. We
observed 275 candidate pi^0 -> e^+e^- events, with an expected background of
21.4 +- 6.2 events which includes the contribution from Dalitz decays. We
measured BR(pi^0 -> e^+e^-, x>0.95) = (6.09 +- 0.40 +- 0.24) times 10^{-8},
where the first error is statistical and the second systematic. This result is
the first significant observation of the excess rate for this decay above the
unitarity lower bound.Comment: New version shortened to PRL length limit. 5 pages, 4 figures.
Published in Phys. Rev. Let
Measurements of the atmospheric neutrino flux by Super-Kamiokande: energy spectra, geomagnetic effects, and solar modulation
A comprehensive study on the atmospheric neutrino flux in the energy region
from sub-GeV up to several TeV using the Super-Kamiokande water Cherenkov
detector is presented in this paper. The energy and azimuthal spectra of the
atmospheric and fluxes
are measured. The energy spectra are obtained using an iterative unfolding
method by combining various event topologies with differing energy responses.
The azimuthal spectra depending on energy and zenith angle, and their
modulation by geomagnetic effects, are also studied. A predicted east-west
asymmetry is observed in both the and samples at 8.0
{\sigma} and 6.0 {\sigma} significance, respectively, and an indication that
the asymmetry dipole angle changes depending on the zenith angle was seen at
the 2.2 {\sigma} level. The measured energy and azimuthal spectra are
consistent with the current flux models within the estimated systematic
uncertainties. A study of the long-term correlation between the atmospheric
neutrino flux and the solar magnetic activity cycle is also performed, and a
weak indication of a correlation was seen at the 1.1 {\sigma} level, using SK
I-IV data spanning a 20 year period. For particularly strong solar activity
periods known as Forbush decreases, no theoretical prediction is available, but
a deviation below the typical neutrino event rate is seen at the 2.4 {\sigma}
level.Comment: 30 pages, 31 figure
Search for GUT Monopoles at Super-Kamiokande
GUT monopoles captured by the Sun's gravitation are expected to catalyze
proton decays via the Callan-Rubakov process. In this scenario, protons, which
initially decay into pions, will ultimately produce \nu_{e}, \nu_{\mu} and
\bar{\nu}_{\mu}. After undergoing neutrino oscillation, all neutrino species
appear when they arrive at the Earth, and can be detected by a 50,000 metric
ton water Cherenkov detector, Super-Kamiokande (SK). A search for low energy
neutrinos in the electron total energy range from 19 to 55 MeV was carried out
with SK and gives a monopole flux limit of F_M(\sigma_0/1 mb) < 6.3 \times
10^{-24} (\beta_M/10^{-3})^2 cm^{-2} s^{-1} sr^{-1} at 90% C.L., where \beta_M
is the monopole velocity in units of the speed of light and \sigma_0 is the
catalysis cross section at \beta_M=1. The obtained limit is more than eight
orders of magnitude more stringent than the current best cosmic-ray
supermassive monopole flux limit, F_M < 1 \times 10^{-15} cm^{-2} s^{-1}
sr^{-1} for \beta_M < 10^{-3} and also two orders of magnitude lower than the
result of the Kamiokande experiment, which used a similar detection method.Comment: 15 pages, 6 figure
Evidence for the Appearance of Atmospheric Tau Neutrinos in Super-Kamiokande
Super-Kamiokande atmospheric neutrino data were fit with an unbinned maximum
likelihood method to search for the appearance of tau leptons resulting from
the interactions of oscillation-generated tau neutrinos in the detector.
Relative to the expectation of unity, the tau normalization is found to be
1.42 \pm 0.35 \ (stat) {\}^{+0.14}_{-0.12}\ (syst) excluding the
no-tau-appearance hypothesis, for which the normalization would be zero, at the
3.8 level. We estimate that 180.1 \pm 44.3\ (stat)
{\}^{+17.8}_{-15.2}\ (syst) tau leptons were produced in the 22.5 kton
fiducial volume of the detector by tau neutrinos during the 2806 day running
period. In future analyses, this large sample of selected tau events will allow
the study of charged current tau neutrino interaction physics with oscillation
produced tau neutrinos.Comment: 7 pages, 4 figures. This is the version as published in Physical
Review Letters including the supplemental figure. A typographical error in
the description of figure 3 is also correcte
The Formation and Evolution of the First Massive Black Holes
The first massive astrophysical black holes likely formed at high redshifts
(z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations.
These black holes grow by mergers and gas accretion, evolve into the population
of bright quasars observed at lower redshifts, and eventually leave the
supermassive black hole remnants that are ubiquitous at the centers of galaxies
in the nearby universe. The astrophysical processes responsible for the
formation of the earliest seed black holes are poorly understood. The purpose
of this review is threefold: (1) to describe theoretical expectations for the
formation and growth of the earliest black holes within the general paradigm of
hierarchical cold dark matter cosmologies, (2) to summarize several relevant
recent observations that have implications for the formation of the earliest
black holes, and (3) to look into the future and assess the power of
forthcoming observations to probe the physics of the first active galactic
nuclei.Comment: 39 pages, review for "Supermassive Black Holes in the Distant
Universe", Ed. A. J. Barger, Kluwer Academic Publisher
Shot noise in mesoscopic systems
This is a review of shot noise, the time-dependent fluctuations in the
electrical current due to the discreteness of the electron charge, in small
conductors. The shot-noise power can be smaller than that of a Poisson process
as a result of correlations in the electron transmission imposed by the Pauli
principle. This suppression takes on simple universal values in a symmetric
double-barrier junction (suppression factor 1/2), a disordered metal (factor
1/3), and a chaotic cavity (factor 1/4). Loss of phase coherence has no effect
on this shot-noise suppression, while thermalization of the electrons due to
electron-electron scattering increases the shot noise slightly. Sub-Poissonian
shot noise has been observed experimentally. So far unobserved phenomena
involve the interplay of shot noise with the Aharonov-Bohm effect, Andreev
reflection, and the fractional quantum Hall effect.Comment: 37 pages, Latex, 10 figures (eps). To be published in "Mesoscopic
Electron Transport," edited by L. P. Kouwenhoven, G. Schoen, and L. L. Sohn,
NATO ASI Series E (Kluwer Academic Publishing, Dordrecht
- …
