325 research outputs found
Search for GUT Monopoles at Super-Kamiokande
GUT monopoles captured by the Sun's gravitation are expected to catalyze
proton decays via the Callan-Rubakov process. In this scenario, protons, which
initially decay into pions, will ultimately produce \nu_{e}, \nu_{\mu} and
\bar{\nu}_{\mu}. After undergoing neutrino oscillation, all neutrino species
appear when they arrive at the Earth, and can be detected by a 50,000 metric
ton water Cherenkov detector, Super-Kamiokande (SK). A search for low energy
neutrinos in the electron total energy range from 19 to 55 MeV was carried out
with SK and gives a monopole flux limit of F_M(\sigma_0/1 mb) < 6.3 \times
10^{-24} (\beta_M/10^{-3})^2 cm^{-2} s^{-1} sr^{-1} at 90% C.L., where \beta_M
is the monopole velocity in units of the speed of light and \sigma_0 is the
catalysis cross section at \beta_M=1. The obtained limit is more than eight
orders of magnitude more stringent than the current best cosmic-ray
supermassive monopole flux limit, F_M < 1 \times 10^{-15} cm^{-2} s^{-1}
sr^{-1} for \beta_M < 10^{-3} and also two orders of magnitude lower than the
result of the Kamiokande experiment, which used a similar detection method.Comment: 15 pages, 6 figure
Measurements of the atmospheric neutrino flux by Super-Kamiokande: energy spectra, geomagnetic effects, and solar modulation
A comprehensive study on the atmospheric neutrino flux in the energy region
from sub-GeV up to several TeV using the Super-Kamiokande water Cherenkov
detector is presented in this paper. The energy and azimuthal spectra of the
atmospheric and fluxes
are measured. The energy spectra are obtained using an iterative unfolding
method by combining various event topologies with differing energy responses.
The azimuthal spectra depending on energy and zenith angle, and their
modulation by geomagnetic effects, are also studied. A predicted east-west
asymmetry is observed in both the and samples at 8.0
{\sigma} and 6.0 {\sigma} significance, respectively, and an indication that
the asymmetry dipole angle changes depending on the zenith angle was seen at
the 2.2 {\sigma} level. The measured energy and azimuthal spectra are
consistent with the current flux models within the estimated systematic
uncertainties. A study of the long-term correlation between the atmospheric
neutrino flux and the solar magnetic activity cycle is also performed, and a
weak indication of a correlation was seen at the 1.1 {\sigma} level, using SK
I-IV data spanning a 20 year period. For particularly strong solar activity
periods known as Forbush decreases, no theoretical prediction is available, but
a deviation below the typical neutrino event rate is seen at the 2.4 {\sigma}
level.Comment: 30 pages, 31 figure
Evidence for the Appearance of Atmospheric Tau Neutrinos in Super-Kamiokande
Super-Kamiokande atmospheric neutrino data were fit with an unbinned maximum
likelihood method to search for the appearance of tau leptons resulting from
the interactions of oscillation-generated tau neutrinos in the detector.
Relative to the expectation of unity, the tau normalization is found to be
1.42 \pm 0.35 \ (stat) {\}^{+0.14}_{-0.12}\ (syst) excluding the
no-tau-appearance hypothesis, for which the normalization would be zero, at the
3.8 level. We estimate that 180.1 \pm 44.3\ (stat)
{\}^{+17.8}_{-15.2}\ (syst) tau leptons were produced in the 22.5 kton
fiducial volume of the detector by tau neutrinos during the 2806 day running
period. In future analyses, this large sample of selected tau events will allow
the study of charged current tau neutrino interaction physics with oscillation
produced tau neutrinos.Comment: 7 pages, 4 figures. This is the version as published in Physical
Review Letters including the supplemental figure. A typographical error in
the description of figure 3 is also correcte
Solar Neutrino Measurements in Super-Kamiokande-IV
Upgraded electronics, improved water system dynamics, better calibration and
analysis techniques allowed Super-Kamiokande-IV to clearly observe very
low-energy 8B solar neutrino interactions, with recoil electron kinetic
energies as low as 3.49 MeV. Super-Kamiokande-IV data-taking began in September
of 2008; this paper includes data until February 2014, a total livetime of 1664
days. The measured solar neutrino flux is (2.308+-0.020(stat.) +
0.039-0.040(syst.)) x 106/(cm2sec) assuming no oscillations. The observed
recoil electron energy spectrum is consistent with no distortions due to
neutrino oscillations. An extended maximum likelihood fit to the amplitude of
the expected solar zenith angle variation of the neutrino-electron elastic
scattering rate in SK-IV results in a day/night asymmetry of
(-3.6+-1.6(stat.)+-0.6(syst.))%. The SK-IV solar neutrino data determine the
solar mixing angle as sin2 theta_12 = 0.327+0.026-0.031, all SK solar data
(SK-I, SK-II, SK III and SKIV) measures this angle to be sin2 theta_12 =
0.334+0.027-0.023, the determined mass-squared splitting is Delta m2_21 =
4.8+1.5-0.8 x10-5 eV2.Comment: Submitted to Physical Review D; 23 pages, 40 figure
Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.6 x 10(20) protons on target
111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee commentsWe thank the J-PARC staff for superb accelerator performance and the CERN NA61/SHINE Collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC, and CFI, Canada; CEA and CNRS/IN2P3, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; RSF, RFBR and MES, Russia; MINECO and ERDF funds, Spain; SNSF and SER, Switzerland; STFC, UK; and the U. S. Deparment of Energy, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK, and the Emerald High Performance Computing facility in the Centre for Innovation, UK. In addition, participation of individual researchers and institutions has been further supported by funds from ERC (FP7), EU; JSPS, Japan; Royal Society, UK; and DOE Early Career program, USA
Search for dinucleon decay into pions at Super-Kamiokande
A search for dinucleon decay into pions with the Super-Kamiokande detector
has been performed with an exposure of 282.1 kiloton-years. Dinucleon decay is
a process that violates baryon number by two units. We present the first search
for dinucleon decay to pions in a large water Cherenkov detector. The modes
O C, O
N, and O
O are investigated. No significant excess in the
Super-Kamiokande data has been found, so a lower limit on the lifetime of the
process per oxygen nucleus is determined. These limits are:
years,
years, and
years. The lower
limits on each mode are about two orders of magnitude better than previous
limits from searches for dinucleon decay in iron.Comment: 20 pages, 17 figures. Accepted for publication in Physical Review D
on March 30, 201
- …
