138 research outputs found
Sex chromosome positions in human interphase nuclei as studied by in situ hybridization with chromosome specific DNA probes
Two cloned repetitive DNA probes, pXBR and CY1, which bind preferentially to specific regions of the human X and Y chromosome, respectively, were used to study the distribution of the sex chromosomes in human lymphocyte nuclei by in situ hybridization experiments. Our data indicate a large variability of the distances between the sex chromosomes in male and female interphase nuclei. However, the mean distance observed between the X and Y chromosome was significantly smaller than the mean distance observed between the two X-chromosomes. The distribution of distances determined experimentally is compared with three model distributions of distances, and the question of a non-random distribution of sex chromosomes is discussed. Mathematical details of these model distributions are provided in an Appendix to this paper. In the case of a human translocation chromosome (XqterXp22.2::Yq11Y qter) contained in the Chinese hamster x human hybrid cell line 445 x 393, the binding sites of pXBR and CY1 were found close to each other in most interphase nuclei. These data demonstrate the potential use of chromosome-specific repetitive DNA probes to study the problem of interphase chromosome topography
Trends in esophageal cancer and body mass index by race and gender in the state of Michigan
<p>Abstract</p> <p>Background</p> <p>Adenocarcinoma of the esophagus has been increasing in incidence in the U.S. over the past several decades, particularly among white males. The factors driving the racial disparity in adenocarcinomas rates are not well understood.</p> <p>Methods</p> <p>Here we examine trends in both esophageal cancer incidence and body mass index (BMI) in a geographically defined cohort by gender and race. Age-adjusted esophageal cancer incidence rates from 1985 to 2005 were calculated from data collected by the Michigan state cancer registry. Trends were analyzed along with trends in BMI data obtained from the Behavioral Risk Factor Survey administered by the Centers for Disease Control.</p> <p>Results</p> <p>Overall, age adjusted incidence rates in esophageal carcinoma increased from 4.49 to 4.72 cases/100,000 persons per year in Michigan from 1985 to 2005. Among white males, the rate of adenocarcinomas increased by 0.21 cases/100,000 per year to a maximum of 6.40 cases/100,000 in 1999, after which these rates remained constant. There was a slight but non-significant increase in the rate of adenocarcinomas among African American males, for whom the average incidence rate was 8 times lower than that for white males (0.58 vs 4.72 cases/100,000 person years). While average BMI is rising in Michigan (from 26.68 in 1988 to 30.33 in 2005), average BMI was slightly higher among African Americans on average, and the rates of increase in BMI were not different between African American males and white males.</p> <p>Conclusion</p> <p>The disparity between African American males and white males is not explained by ecological-level trends in BMI. Further research to identify the factors responsible for this disparity, possibly including anatomic fat distribution, are required.</p
Variations of X Chromosome Inactivation Occur in Early Passages of Female Human Embryonic Stem Cells
X chromosome inactivation (XCI) is a dosage compensation mechanism essential for embryonic development and cell physiology. Human embryonic stem cells (hESCs) derived from inner cell mass (ICM) of blastocyst stage embryos have been used as a model system to understand XCI initiation and maintenance. Previous studies of undifferentiated female hESCs at intermediate passages have shown three possible states of XCI; 1) cells in a pre-XCI state, 2) cells that already exhibit XCI, or 3) cells that never undergo XCI even upon differentiation. In this study, XCI status was assayed in ten female hESC lines between passage 5 and 15 to determine whether XCI variations occur in early passages of hESCs. Our results show that three different states of XCI already exist in the early passages of hESC. In addition, we observe one cell line with skewed XCI and preferential expression of X-linked genes from the paternal allele, while another cell line exhibits random XCI. Skewed XCI in undifferentiated hESCs may be due to clonal selection in culture instead of non-random XCI in ICM cells. We also found that XIST promoter methylation is correlated with silencing of XIST transcripts in early passages of hESCs, even in the pre-XCI state. In conclusion, XCI variations already take place in early passages of hESCs, which may be a consequence of in vitro culture selection during the derivation process. Nevertheless, we cannot rule out the possibility that XCI variations in hESCs may reflect heterogeneous XCI states in ICM cells that stochastically give rise to hESCs
Clinical trials for stem cell therapies
In recent years, clinical trials with stem cells have taken the emerging field in many new directions. While numerous teams continue to refine and expand the role of bone marrow and cord blood stem cells for their vanguard uses in blood and immune disorders, many others are looking to expand the uses of the various types of stem cells found in bone marrow and cord blood, in particular mesenchymal stem cells, to uses beyond those that could be corrected by replacing cells in their own lineage. Early results from these trials have produced mixed results often showing minor or transitory improvements that may be attributed to extracellular factors. More research teams are accelerating the use of other types of adult stem cells, in particular neural stem cells for diseases where beneficial outcome could result from either in-lineage cell replacement or extracellular factors. At the same time, the first three trials using cells derived from pluripotent cells have begun
Smoking and alcohol drinking increased the risk of esophageal cancer among Chinese men but not women in a high-risk population
Although the association for esophageal cancer with tobacco smoking and alcohol drinking has been well established, the risk appears to be less strong in China. To provide more evidence on the effect of smoking and alcohol consumption with esophageal cancer in China, particularly among Chinese women, a population-based case–control study has been conducted in Jiangsu, China, from 2003 to 2007. A total of 1,520 cases and 3,879 controls were recruited. Unconditional multivariate logistic regression analysis was applied. Results showed that the odds ratio (OR) and confidence interval (CI) for ever smoking and alcohol drinking were 1.57 (95% CI: 1.34–1.83) and 1.50 (95% CI: 1.29–1.74). Dose–response relationships were observed with increased intensity and longer duration of smoking/drinking. Risk of smoking and alcohol drinking at the highest joint level was 7.32 (95% CI: 4.58–11.7), when compared to those never smoked and never drank alcohol. Stratifying by genders, smoking and alcohol drinking increased the risk among men with an OR of 1.74 (95% CI: 1.44–2.09) and 1.76 (95% CI: 1.48–2.09); however, neither smoking nor alcohol consumption showed a significant association among women. In conclusion, smoking and alcohol drinking were associated with esophageal cancer risk among Chinese men, but not among Chinese women
Integrin α5β1 Function Is Regulated by XGIPC/kermit2 Mediated Endocytosis during Xenopus laevis Gastrulation
During Xenopus gastrulation α5β1 integrin function is modulated in a temporally and spatially restricted manner, however, the regulatory mechanisms behind this regulation remain uncharacterized. Here we report that XGIPC/kermit2 binds to the cytoplasmic domain of the α5 subunit and regulates the activity of α5β1 integrin. The interaction of kermit2 with α5β1 is essential for fibronectin (FN) matrix assembly during the early stages of gastrulation. We further demonstrate that kermit2 regulates α5β1 integrin endocytosis downstream of activin signaling. Inhibition of kermit2 function impairs cell migration but not adhesion to FN substrates indicating that integrin recycling is essential for mesoderm cell migration. Furthermore, we find that the α5β1 integrin is colocalized with kermit2 and Rab 21 in embryonic and XTC cells. These data support a model where region specific mesoderm induction acts through kermit2 to regulate the temporally and spatially restricted changes in adhesive properties of the α5β1 integrin through receptor endocytosis
Identification of Pax6-Dependent Gene Regulatory Networks in the Mouse Lens
Lineage-specific DNA-binding transcription factors regulate development by activating and repressing particular set of genes required for the acquisition of a specific cell type. Pax6 is a paired domain and homeodomain-containing transcription factor essential for development of central nervous, olfactory and visual systems, as well as endocrine pancreas. Haploinsufficiency of Pax6 results in perturbed lens development and homeostasis. Loss-of-function of Pax6 is incompatible with lens lineage formation and results in abnormal telencephalic development. Using DNA microarrays, we have identified 559 genes expressed differentially between 1-day old mouse Pax6 heterozygous and wild type lenses. Of these, 178 (31.8%) were similarly increased and decreased in Pax6 homozygous embryonic telencephalon [Holm PC, Mader MT, Haubst N, Wizenmann A, Sigvardsson M, Götz M (2007) Loss- and gain-of-function analyses reveals targets of Pax6 in the developing mouse telencephalon. Mol Cell Neurosci 34: 99–119]. In contrast, 381 (68.2%) genes were differently regulated between the lens and embryonic telencephalon. Differential expression of nine genes implicated in lens development and homeostasis: Cspg2, Igfbp5, Mab21l2, Nrf2f, Olfm3, Spag5, Spock1, Spon1 and Tgfb2, was confirmed by quantitative RT-PCR, with five of these genes: Cspg2, Mab21l2, Olfm3, Spag5 and Tgfb2, identified as candidate direct Pax6 target genes by quantitative chromatin immunoprecipitation (qChIP). In Mab21l2 and Tgfb2 promoter regions, twelve putative individual Pax6-binding sites were tested by electrophoretic mobility shift assays (EMSAs) with recombinant Pax6 proteins. This led to the identification of two and three sites in the respective Mab21l2 and Tgfb2 promoter regions identified by qChIPs. Collectively, the present studies represent an integrative genome-wide approach to identify downstream networks controlled by Pax6 that control mouse lens and forebrain development
Preconditioning-induced ischemic tolerance: a window into endogenous gearing for cerebroprotection
Ischemic tolerance defines transient resistance to lethal ischemia gained by a prior sublethal noxious stimulus (i.e., preconditioning). This adaptive response is thought to be an evolutionarily conserved defense mechanism, observed in a wide variety of species. Preconditioning confers ischemic tolerance if not in all, in most organ systems, including the heart, kidney, liver, and small intestine. Since the first landmark experimental demonstration of ischemic tolerance in the gerbil brain in early 1990's, basic scientific knowledge on the mechanisms of cerebral ischemic tolerance increased substantially. Various noxious stimuli can precondition the brain, presumably through a common mechanism, genomic reprogramming. Ischemic tolerance occurs in two temporally distinct windows. Early tolerance can be achieved within minutes, but wanes also rapidly, within hours. Delayed tolerance develops in hours and lasts for days. The main mechanism involved in early tolerance is adaptation of membrane receptors, whereas gene activation with subsequent de novo protein synthesis dominates delayed tolerance. Ischemic preconditioning is associated with robust cerebroprotection in animals. In humans, transient ischemic attacks may be the clinical correlate of preconditioning leading to ischemic tolerance. Mimicking the mechanisms of this unique endogenous protection process is therefore a potential strategy for stroke prevention. Perhaps new remedies for stroke are very close, right in our cells
- …
