1,013 research outputs found

    Effects of gestational age at birth on cognitive performance : a function of cognitive workload demands

    Get PDF
    Objective: Cognitive deficits have been inconsistently described for late or moderately preterm children but are consistently found in very preterm children. This study investigates the association between cognitive workload demands of tasks and cognitive performance in relation to gestational age at birth. Methods: Data were collected as part of a prospective geographically defined whole-population study of neonatal at-risk children in Southern Bavaria. At 8;5 years, n = 1326 children (gestation range: 23–41 weeks) were assessed with the K-ABC and a Mathematics Test. Results: Cognitive scores of preterm children decreased as cognitive workload demands of tasks increased. The relationship between gestation and task workload was curvilinear and more pronounced the higher the cognitive workload: GA2 (quadratic term) on low cognitive workload: R2 = .02, p<0.001; moderate cognitive workload: R2 = .09, p<0.001; and high cognitive workload tasks: R2 = .14, p<0.001. Specifically, disproportionally lower scores were found for very (<32 weeks gestation) and moderately (32–33 weeks gestation) preterm children the higher the cognitive workload of the tasks. Early biological factors such as gestation and neonatal complications explained more of the variance in high (12.5%) compared with moderate (8.1%) and low cognitive workload tasks (1.7%). Conclusions: The cognitive workload model may help to explain variations of findings on the relationship of gestational age with cognitive performance in the literature. The findings have implications for routine cognitive follow-up, educational intervention, and basic research into neuro-plasticity and brain reorganization after preterm birth

    To what extent do site-based training, mentoring, and operational research improve district health system management and leadership in low- and middle-income countries: a systematic review protocol

    Get PDF
    District health managers play a key role in the effectiveness of decentralized health systems in low- and middle-income countries. Inadequate management and leadership skills often hamper their ability to improve quality of care and effectiveness of health service delivery. Nevertheless, significant investments have been made in capacity-building programmes based on site-based training, mentoring, and operational research. This systematic review aims to review the effectiveness of site-based training, mentoring, and operational research (or action research) on the improvement of district health system management and leadership. Our secondary objectives are to assess whether variations in composition or intensity of the intervention influence its effectiveness and to identify enabling and constraining contexts and underlying mechanisms

    High-throughput, quantitative analyses of genetic interactions in E. coli.

    Get PDF
    Large-scale genetic interaction studies provide the basis for defining gene function and pathway architecture. Recent advances in the ability to generate double mutants en masse in Saccharomyces cerevisiae have dramatically accelerated the acquisition of genetic interaction information and the biological inferences that follow. Here we describe a method based on F factor-driven conjugation, which allows for high-throughput generation of double mutants in Escherichia coli. This method, termed genetic interaction analysis technology for E. coli (GIANT-coli), permits us to systematically generate and array double-mutant cells on solid media in high-density arrays. We show that colony size provides a robust and quantitative output of cellular fitness and that GIANT-coli can recapitulate known synthetic interactions and identify previously unidentified negative (synthetic sickness or lethality) and positive (suppressive or epistatic) relationships. Finally, we describe a complementary strategy for genome-wide suppressor-mutant identification. Together, these methods permit rapid, large-scale genetic interaction studies in E. coli

    Cloaking nanoparticles with protein corona shield for targeted drug delivery

    Get PDF
    Targeted drug delivery using nanoparticles can minimize the side effects of conventional pharmaceutical agents and enhance their efficacy. However, translating nanoparticle-based agents into clinical applications still remains a challenge due to the difficulty in regulating interactions on the interfaces between nanoparticles and biological systems. Here, we present a targeting strategy for nanoparticles incorporated with a supramolecularly pre-coated recombinant fusion protein in which HER2-binding affibody combines with glutathione-S-transferase. Once thermodynamically stabilized in preferred orientations on the nanoparticles, the adsorbed fusion proteins as a corona minimize interactions with serum proteins to prevent the clearance of nanoparticles by macrophages, while ensuring systematic targeting functions in vitro and in vivo. This study provides insight into the use of the supramolecularly built protein corona shield as a targeting agent through regulating the interfaces between nanoparticles and biological systems

    A new metric for quantifying the relative impact of risk factors on loss of working life illustrated in a population of working dogs

    Get PDF
    In a resource-limited world, organisations attempting to reduce the impact of health or behaviour issues need to choose carefully how to allocate resources for the highest overall impact. However, such choices may not always be obvious. Which has the biggest impact? A large change to a small number of individuals, or a small change to a large number of individuals? The challenge is identifying the issues that have the greatest impact on the population so potential interventions can be prioritised. We addressed this by developing a score to quantify the impact of health conditions and behaviour problems in a population of working guide dogs using data from Guide Dogs, UK. The cumulative incidence of different issues was combined with information about their impact, in terms of reduction in working life, to create a work score. The work score was created at population-level to illustrate issues with the greatest impact on the population and to understand contributions of breeds or crossbreeds to the workforce. An individual work deficit score was also created and means of this score used to illustrate the impact on working life within a subgroup of the population such as a breed, or crossbreed generation. The work deficit scores showed that those removed for behavioural issues had a greater impact on the overall workforce than those removed for health reasons. Additionally trends over time illustrated the positive influence of interventions Guide Dogs have made to improve their workforce. Information highlighted by these scores is pertinent to the effort of Guide Dogs to ensure partnerships are lasting. Recognising that the scores developed here could be transferable to a wide variety of contexts and species, most notably human work force decisions; we discuss possible uses and adaptations such as reduction in lifespan, quality of life and yield in production animals

    The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses

    Get PDF
    Plants actively perceive and respond to perturbations in their cell walls which arise during growth, biotic and abiotic stresses. However, few components involved in plant cell wall integrity sensing have been described to date. Using a reverse-genetic approach, we identified the Arabidopsis thaliana leucine-rich repeat receptor kinase MIK2 as an important regulator of cell wall damage responses triggered upon cellulose biosynthesis inhibition. Indeed, loss-of-function mik2 alleles are strongly affected in immune marker gene expression, jasmonic acid production and lignin deposition. MIK2 has both overlapping and distinct functions with THE1, a malectin-like receptor kinase previously proposed as cell wall integrity sensor. In addition, mik2 mutant plants exhibit enhanced leftward root skewing when grown on vertical plates. Notably, natural variation in MIK2 (also named LRR-KISS) has been correlated recently to mild salt stress tolerance, which we could confirm using our insertional alleles. Strikingly, both the increased root skewing and salt stress sensitivity phenotypes observed in the mik2 mutant are dependent on THE1. Finally, we found that MIK2 is required for resistance to the fungal root pathogen Fusarium oxysporum. Together, our data identify MIK2 as a novel component in cell wall integrity sensing and suggest that MIK2 is a nexus linking cell wall integrity sensing to growth and environmental cues

    Modeling risk factors and confounding effects in stroke

    Get PDF
    corecore