978 research outputs found
Differential and converging molecular mechanisms of antidepressants' action in the hippocampal dentate gyrus
Major depression is a highly prevalent, multidimensional disorder. Although several classes of antidepressants (ADs) are currently available, treatment efficacy is limited, and relapse rates are high; thus, there is a need to find better therapeutic strategies. Neuroplastic changes in brain regions such as the hippocampal dentate gyrus (DG) accompany depression and its amelioration with ADs. In this study, the unpredictable chronic mild stress (uCMS) rat model of depression was used to determine the molecular mediators of chronic stress and the targets of four ADs with different pharmacological profiles (fluoxetine, imipramine, tianeptine, and agomelatine) in the hippocampal DG. All ADs, except agomelatine, reversed the depression-like behavior and neuroplastic changes produced by uCMS. Chronic stress induced significant molecular changes that were generally reversed by fluoxetine, imipramine, and tianeptine. Fluoxetine primarily acted on neurons to reduce the expression of pro-inflammatory response genes and increased a set of genes involved in cell metabolism. Similarities were found between the molecular actions and targets of imipramine and tianeptine that activated pathways related to cellular protection. Agomelatine presented a unique profile, with pronounced effects on genes related to Rho-GTPase-related pathways in oligodendrocytes and neurons. These differential molecular signatures of ADs studied contribute to our understanding of the processes implicated in the onset and treatment of depression-like symptoms.Patricia Patricio, Antonio Mateus-Pinheiro, Monica Morais, and Nuno Dinis Alves received fellowships from the Portuguese Foundation for Science and Technology (FCT). Michal Korostynski and Marcin Piechota were funded by the POIG De-Me-Ter 3.1 and NCN 2011/03/D/NZ3/01686 grants. This study was co-funded by the Life and Health Sciences Research Institute (ICVS) and ON. 2-O NOVO NORTE-North Portugal Regional Operational Programme 2007/2013, of the National Strategic Reference Framework (NSRF) 2007/ 2013, through the European Regional Development Fund (ERDF) and by the SwitchBox Consortium (Contract FP7-Health-F2-2010-259772 from the European Union). The authors declare no conflict of interest
Tau-dependent suppression of adult neurogenesis in the stressed hippocampus
uncorrected proofStress, a well-known sculptor of brain plasticity, is shown to suppress hippocampal neurogenesis in the adult brain; yet, the underlying cellular mechanisms are poorly investigated. Previous studies have shown that chronic stress triggers hyperphosphorylation and accumulation of the cytoskeletal protein Tau, a process that may impair the cytoskeleton-regulating role (s) of this protein with impact on neuronal function. Here, we analyzed the role of Tau on stress-driven suppression of neurogenesis in the adult dentate gyrus (DG) using animals lacking Tau (Tau-knockout; Tau-KO) and wild-type (WT) littermates. Unlike WTs, Tau-KO animals exposed to chronic stress did not exhibit reduction in DG proliferating cells, neuroblasts and newborn neurons; however, newborn astrocytes were similarly decreased in both Tau-KO and WT mice. In addition, chronic stress reduced phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR)/glycogen synthase kinase-3 beta (GSK3 beta)/beta-catenin signaling, known to regulate cell survival and proliferation, in the DG of WT, but not Tau-KO, animals. These data establish Tau as a critical regulator of the cellular cascades underlying stress deficits on hippocampal neurogenesis in the adult brain.Portuguese Foundation for Science and Technology (FCT) Investigator grants (IF/01799/2013, IF/00883/2013, IF/01079/2014, respectively). This work was funded by FCT research grants 'PTDC/SAU-NMC/113934/2009' (IS), the Portuguese North Regional Operational Program (ON.2) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER), the Project Estratégico co-funded by FCT (PEst-C/SAU/LA0026/2013) and the European Regional Development Fund COMPETE (FCOMP-01-0124-FEDER-037298) as well as the project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER)info:eu-repo/semantics/publishedVersio
Tau mislocation in glucocorticoid-triggered hippocampal pathology
The exposure to high glucocorticoids (GC) triggers neuronal atrophy and cognitive deficits, but the exact cellular mechanisms underlying the GC-associated dendritic remodeling and spine loss are still poorly understood. Previous studies have implicated sustained GC elevations in neurodegenerative mechanisms through GC-evoked hyperphosphorylation of the cytoskeletal protein Tau while Tau mislocation has recently been proposed as relevant in Alzheimer's disease (AD) pathology. In light of the dual cytoplasmic and synaptic role of Tau, this study monitored the impact of prolonged GC treatment on Tau intracellular localization and its phosphorylation status in different cellular compartments. We demonstrate, both by biochemical and ultrastructural analysis, that GC administration led to cytosolic and dendritic Tau accumulation in rat hippocampus, and triggered Tau hyperphosphorylation in epitopes related to its malfunction (Ser396/404) and cytoskeletal pathology (e.g., Thr231 and Ser262). In addition, we show, for the first time, that chronic GC administration also increased Tau levels in synaptic compartment; however, at the synapse, there was an increase in phosphorylation of Ser396/404, but a decrease of Thr231. These GC-triggered Tau changes were paralleled by reduced levels of synaptic scaffolding proteins such as PSD-95 and Shank proteins as well as reduced dendritic branching and spine loss. These in vivo findings add to our limited knowledge about the underlying mechanisms of GC-evoked synaptic atrophy and neuronal disconnection implicating Tau missorting in mechanism(s) of synaptic damage, beyond AD pathology.We would like to thank Rui Fernandes for TEM technical support. IS was supported by the Portuguese Foundation for Science and Technology (FCT).This work was funded by the Portuguese Foundation for Science and Technology (FCT) (grant NMC-113934 to IS and grant SFRH/BPD/80118/2011 to JC), Canon Foundation and project DoIT - Desenvolvimento e Operacionalização da Investigação de Translação (N° do projeto 13853), funded by Fundo Europeu de Desenvolvimento Regional (FEDER) through the Programa Operacional Fatores de Competitividade (POFC).info:eu-repo/semantics/publishedVersio
The effects of stimulus complexity on the preattentive processing of self-generated and nonself voices: an ERP study
The ability to differentiate one's own voice from the voice of somebody else plays a critical role in successful verbal self-monitoring processes and in communication. However, most of the existing studies have only focused on the sensory correlates of self-generated voice processing, whereas the effects of attentional demands and stimulus complexity on self-generated voice processing remain largely unknown. In this study, we investigated the effects of stimulus complexity on the preattentive processing of self and nonself voice stimuli. Event-related potentials (ERPs) were recorded from 17 healthy males who watched a silent movie while ignoring prerecorded self-generated (SGV) and nonself (NSV) voice stimuli, consisting of a vocalization (vocalization category condition: VCC) or of a disyllabic word (word category condition: WCC). All voice stimuli were presented as standard and deviant events in four distinct oddball sequences. The mismatch negativity (MMN) ERP component peaked earlier for NSV than for SGV stimuli. Moreover, when compared with SGV stimuli, the P3a amplitude was increased for NSV stimuli in the VCC only, whereas in the WCC no significant differences were found between the two voice types. These findings suggest differences in the time course of automatic detection of a change in voice identity. In addition, they suggest that stimulus complexity modulates the magnitude of the orienting response to SGV and NSV stimuli, extending previous findings on self-voice processing.This work was supported by Grant Numbers IF/00334/2012, PTDC/PSI-PCL/116626/2010, and PTDC/MHN-PCN/3606/2012, funded by the Fundacao para a Ciencia e a Tecnologia (FCT, Portugal) and the Fundo Europeu de Desenvolvimento Regional through the European programs Quadro de Referencia Estrategico Nacional and Programa Operacional Factores de Competitividade, awarded to A.P.P., and by FCT Doctoral Grant Number SFRH/BD/77681/2011, awarded to T.C.info:eu-repo/semantics/publishedVersio
Blocking human fear memory with the matrix metalloproteinase inhibitor doxycycline
Learning to predict threat is a fundamental ability of many biological organisms, and a laboratory model for anxiety disorders. Interfering with such memories in humans would be of high clinical relevance. On the basis of studies in cell cultures and slice preparations, it is hypothesised that synaptic remodelling required for threat learning involves the extracellular enzyme matrix metalloproteinase (MMP) 9. However, in vivo evidence for this proposal is lacking. Here we investigate human Pavlovian fear conditioning under the blood-brain barrier crossing MMP inhibitor doxycyline in a pre-registered, randomised, double-blind, placebo-controlled trial. We find that recall of threat memory, measured with fear-potentiated startle 7 days after acquisition, is attenuated by ~60% in individuals who were under doxycycline during acquisition. This threat memory impairment is also reflected in increased behavioural surprise signals to the conditioned stimulus during subsequent re-learning, and already late during initial acquisition. Our findings support an emerging view that extracellular signalling pathways are crucially required for threat memory formation. Furthermore, they suggest novel pharmacological methods for primary prevention and treatment of posttraumatic stress disorder.Molecular Psychiatry advance online publication, 4 April 2017; doi:10.1038/mp.2017.65
Programmable disorder in random DNA tilings
Scaling up the complexity and diversity of synthetic molecular structures will require strategies that exploit the inherent stochasticity of molecular systems in a controlled fashion. Here we demonstrate a framework for programming random DNA tilings and show how to control the properties of global patterns through simple, local rules. We constructed three general forms of planar network—random loops, mazes and trees—on the surface of self-assembled DNA origami arrays on the micrometre scale with nanometre resolution. Using simple molecular building blocks and robust experimental conditions, we demonstrate control of a wide range of properties of the random networks, including the branching rules, the growth directions, the proximity between adjacent networks and the size distribution. Much as combinatorial approaches for generating random one-dimensional chains of polymers have been used to revolutionize chemical synthesis and the selection of functional nucleic acids, our strategy extends these principles to random two-dimensional networks of molecules and creates new opportunities for fabricating more complex molecular devices that are organized by DNA nanostructures
Community-based management induces rapid recovery of a high-value tropical freshwater fishery
Tropical wetlands are highly threatened socio-ecological systems, where local communities rely heavily on aquatic animal protein, such as fish, to meet food security. Here, we quantify how a ‘win-win’ community-based resource management program induced stock recovery of the world’s largest scaled freshwater fish (Arapaima gigas), providing both food and income. We analyzed stock assessment data over eight years and examined the effects of protected areas, community-based management, and landscape and limnological variables across 83 oxbow lakes monitored along a ~500-km section of the Juruá River of Western Brazilian Amazonia. Patterns of community management explained 71.8% of the variation in arapaima population sizes. Annual population counts showed that protected lakes on average contained 304.8 (±332.5) arapaimas, compared to only 9.2 (±9.8) in open-access lakes. Protected lakes have become analogous to a high-interest savings account, ensuring an average annual revenue of US1046.6 per household, greatly improving socioeconomic welfare. Arapaima management is a superb window of opportunity in harmonizing the co-delivery of sustainable resource management and poverty alleviation. We show that arapaima management deserves greater attention from policy makers across Amazonian countries, and highlight the need to include local stakeholders in conservation planning of Amazonian floodplains
Food for pollinators: quantifying the nectar and pollen resources of urban flower meadows
Planted meadows are increasingly used to improve the biodiversity and aesthetic amenity value of urban areas. Although many ‘pollinator-friendly’ seed mixes are available, the floral resources these provide to flower-visiting insects, and how these change through time, are largely unknown. Such data are necessary to compare the resources provided by alternative meadow seed mixes to each other and to other flowering habitats. We used quantitative surveys of over 2 million flowers to estimate the nectar and pollen resources offered by two exemplar commercial seed mixes (one annual, one perennial) and associated weeds grown as 300m2 meadows across four UK cities, sampled at six time points between May and September 2013. Nectar sugar and pollen rewards per flower varied widely across 65 species surveyed, with native British weed species (including dandelion, Taraxacum agg.) contributing the top five nectar producers and two of the top ten pollen producers. Seed mix species yielding the highest rewards per flower included Leontodon hispidus, Centaurea cyanus and C. nigra for nectar, and Papaver rhoeas, Eschscholzia californica and Malva moschata for pollen. Perennial meadows produced up to 20x more nectar and up to 6x more pollen than annual meadows, which in turn produced far more than amenity grassland controls. Perennial meadows produced resources earlier in the year than annual meadows, but both seed mixes delivered very low resource levels early in the year and these were provided almost entirely by native weeds. Pollen volume per flower is well predicted statistically by floral morphology, and nectar sugar mass and pollen volume per unit area are correlated with flower counts, raising the possibility that resource levels can be estimated for species or habitats where they cannot be measured directly. Our approach does not incorporate resource quality information (for example, pollen protein or essential amino acid content), but can easily do so when suitable data exist. Our approach should inform the design of new seed mixes to ensure continuity in floral resource availability throughout the year, and to identify suitable species to fill resource gaps in established mixes
Edible bio-based nanostructures: delivery, absorption and potential toxicity
The development of bio-based nanostructures as nanocarriers of bioactive compounds to specific body sites has been presented as a hot topic in food, pharmaceutical and nanotechnology fields. Food and pharmaceutical industries seek to explore the huge potential of these nanostructures, once they can be entirely composed of biocompatible and non-toxic materials. At the same time, they allow the incorporation of lipophilic and hydrophilic bioactive compounds protecting them against degradation, maintaining its active and functional performance. Nevertheless, the physicochemical properties of such structures (e.g., size and charge) could change significantly their behavior in the gastrointestinal (GI) tract. The main challenges in the development of these nanostructures are the proper characterization and understanding of the processes occurring at their surface, when in contact with living systems. This is crucial to understand their delivery and absorption behavior as well as to recognize potential toxicological effects. This review will provide an insight into the recent innovations and challenges in the field of delivery via GI tract using bio-based nanostructures. Also, an overview of the approaches followed to ensure an effective deliver (e.g., avoiding physiological barriers) and to enhance stability and absorptive intestinal uptake of bioactive compounds will be provided. Information about nanostructures potential toxicity and a concise description of the in vitro and in vivo toxicity studies will also be given.Joana T. Martins, Oscar L. Ramos, Ana C. Pinheiro, Ana I. Bourbon, Helder D. Silva and Miguel A. Cerqueira (SFRH/BPD/89992/2012, SFRH/BPD/80766/2011, SFRH/BPD/101181/2014, SFRH/BD/73178/2010, SFRH/BD/81288/2011, and SFRH/BPD/72753/2010, respectively) are the recipients of a fellowship from the Fundacao para a Ciencia e Tecnologia (FCT, POPH-QREN and FSE, Portugal). The authors thank the FCT Strategic Project PEst-OE/EQB/LA0023/2013 and the project "BioInd-Biotechnology and Bioengineering for improved Industrial and Agro-Food processes," REF.NORTE-07-0124-FEDER-000028, co-funded by the Programa Operacional Regional do Norte (ON.2-O Novo Norte), QREN, FEDER. We also thank to the European Commission: BIOCAPS (316265, FP7/REGPOT-2012-2013.1) and Xunta de Galicia: Agrupamento INBIOMED (2012/273) and Grupo con potencial de crecimiento. The support of EU Cost Action FA1001 is gratefully acknowledged
Alternative communication systems for people with severe motor disabilities: a survey
We have now sufficient evidence that using electrical biosignals in the field of Alternative and Augmented Communication is feasible. Additionally, they are particularly suitable in the case of people with severe motor impairment, e.g. people with high-level spinal cord injury or with locked-up syndrome. Developing solutions for them implies that we find ways to use sensors that fit the user's needs and limitations, which in turn impacts the specifications of the system translating the user's intentions into commands. After devising solutions for a given user or profile, the system should be evaluated with an appropriate method, allowing a comparison with other solutions. This paper submits a review of the way three bioelectrical signals - electromyographic, electrooculographic and electroencephalographic - have been utilised in alternative communication with patients suffering severe motor restrictions. It also offers a comparative study of the various methods applied to measure the performance of AAC systems
- …
