46 research outputs found
Naproxcinod shows significant advantages over naproxen in the mdx model of Duchenne Muscular Dystrophy
Glycogen-autophagy: Molecular machinery and cellular mechanisms of glycophagy
Autophagy is an essential cellular process involving degradation of superfluous or defective macromolecules and organelles as a form of homeostatic recycling. Initially proposed to be a "bulk" degradation pathway, a more nuanced appreciation of selective autophagy pathways has developed in the literature in recent years. As a glycogen-selective autophagy process, "glycophagy" is emerging as a key metabolic route of transport and delivery of glycolytic fuel substrate. Study of glycophagy is at an early stage. Enhanced understanding of this major noncanonical pathway of glycogen flux will provide important opportunities for new insights into cellular energy metabolism. In addition, glycogen metabolic mishandling is centrally involved in the pathophysiology of several metabolic diseases in a wide range of tissues, including the liver, skeletal muscle, cardiac muscle, and brain. Thus, advances in this exciting new field are of broad multidisciplinary interest relevant to many cell types and metabolic states. Here, we review the current evidence of glycophagy involvement in homeostatic cellular metabolic processes and of molecular mediators participating in glycophagy flux. We integrate information from a variety of settings including cell lines, primary cell culture systems, ex vivo tissue preparations, genetic disease models, and clinical glycogen disease states
Glycogen-autophagy: molecular machinery and cellular mechanisms of glycophagy
Autophagy is an essential cellular process involving degradation of superfluous or defective macromolecules and organelles as a form of homeostatic recycling. Initially proposed to be a “bulk” degradation pathway, a more nuanced appreciation of selective autophagy pathways has developed in the literature in recent years. As a glycogen-selective autophagy process, “glycophagy” is emerging as a key metabolic route of transport and delivery of glycolytic fuel substrate. Study of glycophagy is at an early stage. Enhanced understanding of this major noncanonical pathway of glycogen flux will provide important opportunities for new insights into cellular energy metabolism. In addition, glycogen metabolic mishandling is centrally involved in the pathophysiology of several metabolic diseases in a wide range of tissues, including the liver, skeletal muscle, cardiac muscle, and brain. Thus, advances in this exciting new field are of broad multidisciplinary interest relevant to many cell types and metabolic states. Here, we review the current evidence of glycophagy involvement in homeostatic cellular metabolic processes and of molecular mediators participating in glycophagy flux. We integrate information from a variety of settings including cell lines, primary cell culture systems, ex vivo tissue preparations, genetic disease models, and clinical glycogen disease states
Cardiac mechanical efficiency is preserved in primary cardiac hypertrophy despite impaired mechanical function
Increased heart size is a major risk factor for heart failure and premature mortality. Although abnormal heart growth subsequent to hypertension often accompanies disturbances in mechano-energetics and cardiac efficiency, it remains uncertain whether hypertrophy is their primary driver. In this study, we aimed to investigate the direct association between cardiac hypertrophy and cardiac mechano-energetics using isolated left-ventricular trabeculae from a rat model of primary cardiac hypertrophy and its control. We evaluated energy expenditure (heat output) and mechanical performance (force length work production) simultaneously at a range of preloads and afterloads in a microcalorimeter, we determined energy expenditure related to cross-bridge cycling and Ca2+ cycling (activation heat), and we quantified energy efficiency. Rats with cardiac hypertrophy exhibited increased cardiomyocyte length and width. Their trabeculae showed mechanical impairment, evidenced by lower force production, extent and kinetics of shortening, and work output. Lower force was associated with lower energy expenditure related to Ca2+ cycling and to cross-bridge cycling. However, despite these changes, both mechanical and cross-bridge energy efficiency were unchanged. Our results show that cardiac hypertrophy is associated with impaired contractile performance and with preservation of energy efficiency. These findings provide direction for future investigations targeting metabolic and Ca2+ disturbances underlying cardiac mechanical and energetic impairment in primary cardiac hypertrophy
Elevated myocardial fructose and sorbitol levels are associated with diastolic dysfunction in diabetic patients, and cardiomyocyte lipid inclusions in vitro
Diabetes is associated with cardiac metabolic disturbances and increased heart failure risk. Plasma fructose levels are elevated in diabetic patients. A direct role for fructose involvement in diabetic heart pathology has not been investigated. The goals of this study were to clinically evaluate links between myocardial fructose and sorbitol (a polyol pathway fructose precursor) levels with evidence of cardiac dysfunction, and to experimentally assess the cardiomyocyte mechanisms involved in mediating the metabolic effects of elevated fructose. Fructose and sorbitol levels were increased in right atrial appendage tissues of type 2 diabetic patients (2.8- and 1.5-fold increase respectively). Elevated cardiac fructose levels were confirmed in type 2 diabetic rats. Diastolic dysfunction (increased E/e’, echocardiography) was significantly correlated with cardiac sorbitol levels. Elevated myocardial mRNA expression of the fructose-specific transporter, Glut5 (43% increase), and the key fructose-metabolizing enzyme, Fructokinase-A (50% increase) was observed in type 2 diabetic rats (Zucker diabetic fatty rat). In neonatal rat ventricular myocytes, fructose increased glycolytic capacity and cytosolic lipid inclusions (28% increase in lipid droplets/cell). This study provides the first evidence that elevated myocardial fructose and sorbitol are associated with diastolic dysfunction in diabetic patients. Experimental evidence suggests that fructose promotes the formation of cardiomyocyte cytosolic lipid inclusions, and may contribute to lipotoxicity in the diabetic heart
Methods for detection of cardiac glycogen-autophagy
Glycogen-autophagy ('glycophagy') is a selective autophagy process involved in delivering glycogen to the lysosome for bulk degradation. Glycophagy protein intermediaries include STBD1 as a glycogen tagging receptor, delivering the glycogen cargo into the forming phagosome by partnering with the Atg8 homolog, GABARAPL1. Glycophagy is emerging as a key process of energy metabolism and development of reliable tools for assessment of glycophagy activity is an important priority. Here we show that antibodies raised against the N-terminus of the GABARAPL1 protein (but not the full-length protein) detected a specific endogenous GABARAPL1 immunoblot band at 18kDa. A stable GFP-GABARAPL1 cardiac cell line was used to quantify GABARAPL1 lysosomal flux via measurement of GFP puncta in response to lysosomal inhibition with bafilomycin. Endogenous glycophagy flux was quantified in primary rat ventricular myocytes by the extent of glycogen accumulation with bafilomycin combined with chloroquine treatment (no effect observed with bafilomycin or chloroquine alone). In wild-type isolated mouse hearts, bafilomycin alone and bafilomycin combined with chloroquine (but not chloroquine alone) elicited a significant increase in glycogen content signifying basal glycophagy flux. Collectively, these methodologies provide a comprehensive toolbox for tracking cardiac glycophagy activity to advance research into the role of glycophagy in health and disease
Myocardial glycophagy flux dysregulation and glycogen accumulation characterize diabetic cardiomyopathy
Diabetic heart disease morbidity and mortality is escalating. No specific therapeutics exist and mechanistic understanding of diabetic cardiomyopathy etiology is lacking. While lipid accumulation is a recognized cardiomyocyte phenotype of diabetes, less is known about glycolytic fuel handling and storage. Based on in vitro studies, we postulated the operation of an autophagy pathway in the myocardium specific for glycogen homeostasis - glycophagy. Here we visualize occurrence of cardiac glycophagy and show that the diabetic myocardium is characterized by marked glycogen elevation and altered cardiomyocyte glycogen localization. We establish that cardiac glycophagy flux is disturbed in diabetes. Glycophagy may represent a potential therapeutic target for alleviating the myocardial impacts of metabolic disruption in diabetic heart disease
