455 research outputs found

    Comment mesurer les progrès de la lecture?

    Get PDF
    New observations of Neptune’s clouds in the near infrared were acquired in October 2013 with SINFONI on ESO’s Very Large Telescope (VLT) in Chile. SINFONI is an Integral Field Unit spectrometer returning a 64 × 64 pixel image with 2048 wavelengths. Image cubes in the J-band (1.09 – 1.41 μm) and H-band (1.43 – 1.87 μm) were obtained at spatial resolutions of 0.1″and 0.025″per pixel, while SINFONI’s adaptive optics provided an effective resolution of approximately 0.1″. Image cubes were obtained at the start and end of three successive nights to monitor the temporal development of discrete clouds both at short timescales (i.e. during a single night) as well as over the longer period of the three-day observing run. These observations were compared with similar H-band observations obtained in September 2009 with the NIFS Integral Field Unit spectrometer on the Gemini-North telescope in Hawaii, previously reported by Irwin et al., Icarus 216, 141-158, 2011, and previously unreported Gemini/NIFS observations at lower spatial resolution made in 2011. We find both similarities and differences between these observations, spaced over four years. The same overall cloud structure is seen with high, bright clouds visible at mid-latitudes (30 – 40°N,S), with slightly lower clouds observed at lower latitudes, together with small discrete clouds seen circling the pole at a latitude of approximately 60°S. However, while discrete clouds were visible at this latitude at both the main cloud deck level (at 2–3 bars) and in the upper troposphere (100–500mb) in 2009, no distinct deep (2–3 bar), discrete circumpolar clouds were visible in 2013, although some deep clouds were seen at the southern edge of the main cloud belt at 30–40°S, which have not been observed before. The nature of the deep sub-polar discrete clouds observed in 2009 is intriguing. While it is possible that in 2013 these deeper clouds were masked by faster moving, overlying features, we consider that it is unlikely that this should have happened in 2013, but not in 2009 when the upper-cloud activity was generally similar. Meanwhile, the deep clouds seen at the southern edge of the main cloud belt at 30 – 40°S in 2013, should also have been detectable in 2009, but were not seen. Hence, these observations may have detected a real temporal variation in the occurrence of Neptune’s deep clouds, pointing to underlying variability in the convective activity at the pressure of the main cloud deck at 2–3 bars near Neptune’s south pole and also in the main observable cloud belt at 30 – 40°S.</p

    Detection of H3+ auroral emission in Jupiter's 5-micron window

    Get PDF
    We use high-resolution ground-based observations from the VLT CRIRES instrument in November 2012 to identify sixteen previously undetected H3+ emission lines from Jupiter’s ionosphere. These emission lines are located in Jupiter’s 5-micron window (4.5−5.2 μm), an optically-thin region of the planet’s spectrum where the radiation mostly originates from the deep troposphere. The H3+ emission lines are so strong that they are visible even against this bright background. We measure the Doppler broadening of the H3+ emission lines in order to evaluate the kinetic temperature of the molecules, and we obtain a value of 1390 ± 160 K. We also measure the relative intensities of lines in the ν2 fundamental in order to calculate the rotational temperature, obtaining a value of 960 ± 40 K. Finally, we use the detection of an emission line from the 2ν2(2)-ν2 overtone to measure a vibrational temperature of 925 ± 25 K. We use these three independent temperature estimates to discuss the thermodynamic equilibrium of Jupiter’s ionosphere

    Cold gas accretion in galaxies

    Get PDF
    Evidence for the accretion of cold gas in galaxies has been rapidly accumulating in the past years. HI observations of galaxies and their environment have brought to light new facts and phenomena which are evidence of ongoing or recent accretion: 1) A large number of galaxies are accompanied by gas-rich dwarfs or are surrounded by HI cloud complexes, tails and filaments. It may be regarded as direct evidence of cold gas accretion in the local universe. It is probably the same kind of phenomenon of material infall as the stellar streams observed in the halos of our galaxy and M31. 2) Considerable amounts of extra-planar HI have been found in nearby spiral galaxies. While a large fraction of this gas is produced by galactic fountains, it is likely that a part of it is of extragalactic origin. 3) Spirals are known to have extended and warped outer layers of HI. It is not clear how these have formed, and how and for how long the warps can be sustained. Gas infall has been proposed as the origin. 4) The majority of galactic disks are lopsided in their morphology as well as in their kinematics. Also here recent accretion has been advocated as a possible cause. In our view, accretion takes place both through the arrival and merging of gas-rich satellites and through gas infall from the intergalactic medium (IGM). The infall may have observable effects on the disk such as bursts of star formation and lopsidedness. We infer a mean ``visible'' accretion rate of cold gas in galaxies of at least 0.2 Msol/yr. In order to reach the accretion rates needed to sustain the observed star formation (~1 Msol/yr), additional infall of large amounts of gas from the IGM seems to be required.Comment: To appear in Astronomy & Astrophysics Reviews. 34 pages. Full-resolution version available at http://www.astron.nl/~oosterlo/accretionRevie

    Spectral analysis of Uranus' 2014 bright storm with VLT/SINFONI

    Get PDF
    An extremely bright storm system observed in Uranus' atmosphere by amateur observers in September 2014 triggered an international campaign to observe this feature with many telescopes across the world. Observations of the storm system in the near infrared were acquired in October and November 2014 with SINFONI on ESO's Very Large Telescope (VLT) in Chile. SINFONI is an Integral Field Unit spectrometer returning 64. ×. 64 pixel images with 2048 wavelengths and uses adaptive optics. Image cubes in the H-band (1.43-1.87. μm) were obtained at spatial resolutions of ~0.1″ per pixel. The observations show that the centre of the storm feature shifts markedly with increasing altitude, moving in the retrograde direction and slightly poleward with increasing altitude. We also see a faint 'tail' of more reflective material to the immediate south of the storm, which again trails in the retrograde direction. The observed spectra were analysed with the radiative transfer and retrieval code, NEMESIS (Irwin et al. [2008]. J. Quant. Spec. Radiat. Transfer, 109, 1136-1150). We find that the storm is well-modelled using either two main cloud layers of a 5-layer aerosol model based on Sromovsky et al. (Sromovsky et al. [2011]. Icarus, 215, 292-312) or by the simpler two-cloud-layer model of Tice et al. (Tice et al. [2013]. Icarus, 223, 684-698). The deep component appears to be due to a brightening (i.e. an increase in reflectivity) and increase in altitude of the main tropospheric cloud deck at 2-3. bars for both models, while the upper component of the feature was modelled as being due to either a thickening of the tropospheric haze of the 2-layer model or a vertical extension of the upper tropospheric cloud of the 5-layer model, assumed to be composed of methane ice and based at the methane condensation level of our assumed vertical temperature and abundance profile at 1.23. bar. We also found this methane ice cloud to be responsible for the faint 'tail' seen to the feature's south and the brighter polar 'hood' seen in all observations polewards of ~45°N for the 5-layer model. During the twelve days between our sets of observations the higher-altitude component of the feature was observed to have brightened significantly and extended to even higher altitudes, while the deeper component faded

    Hazy Blue Worlds:A Holistic Aerosol Model for Uranus and Neptune, Including Dark Spots

    Get PDF
    We present a reanalysis (using the Minnaert limb-darkening approximation) of visible/near-infrared (0.3 - 2.5 micron) observations of Uranus and Neptune made by several instruments. We find a common model of the vertical aerosol distribution that is consistent with the observed reflectivity spectra of both planets, consisting of: 1) a deep aerosol layer with a base pressure > 5-7 bar, assumed to be composed of a mixture of H2S ice and photochemical haze; 2) a layer of photochemical haze/ice, coincident with a layer of high static stability at the methane condensation level at 1-2 bar; and 3) an extended layer of photochemical haze, likely mostly of the same composition as the 1-2-bar layer, extending from this level up through to the stratosphere, where the photochemical haze particles are thought to be produced. For Neptune, we find that we also need to add a thin layer of micron-sized methane ice particles at ~0.2 bar to explain the enhanced reflection at longer methane-absorbing wavelengths. We suggest that methane condensing onto the haze particles at the base of the 1-2-bar aerosol layer forms ice/haze particles that grow very quickly to large size and immediately 'snow out' (as predicted by Carlson et al. 1988), re-evaporating at deeper levels to release their core haze particles to act as condensation nuclei for H2S ice formation. In addition, we find that the spectral characteristics of 'dark spots', such as the Voyager-2/ISS Great Dark Spot and the HST/WFC3 NDS-2018, are well modelled by a darkening or possibly clearing of the deep aerosol layer only.Comment: 58 pages, 23 figures, 4 table

    Hazy Blue Worlds:A Holistic Aerosol Model for Uranus and Neptune, Including Dark Spots

    Get PDF
    We present a reanalysis (using the Minnaert limb-darkening approximation) of visible/near-infrared (0.3 - 2.5 micron) observations of Uranus and Neptune made by several instruments. We find a common model of the vertical aerosol distribution that is consistent with the observed reflectivity spectra of both planets, consisting of: 1) a deep aerosol layer with a base pressure > 5-7 bar, assumed to be composed of a mixture of H2S ice and photochemical haze; 2) a layer of photochemical haze/ice, coincident with a layer of high static stability at the methane condensation level at 1-2 bar; and 3) an extended layer of photochemical haze, likely mostly of the same composition as the 1-2-bar layer, extending from this level up through to the stratosphere, where the photochemical haze particles are thought to be produced. For Neptune, we find that we also need to add a thin layer of micron-sized methane ice particles at ~0.2 bar to explain the enhanced reflection at longer methane-absorbing wavelengths. We suggest that methane condensing onto the haze particles at the base of the 1-2-bar aerosol layer forms ice/haze particles that grow very quickly to large size and immediately 'snow out' (as predicted by Carlson et al. 1988), re-evaporating at deeper levels to release their core haze particles to act as condensation nuclei for H2S ice formation. In addition, we find that the spectral characteristics of 'dark spots', such as the Voyager-2/ISS Great Dark Spot and the HST/WFC3 NDS-2018, are well modelled by a darkening or possibly clearing of the deep aerosol layer only.Comment: 58 pages, 23 figures, 4 table

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Spectral determination of the colour and vertical structure of dark spots in Neptune’s atmosphere

    Get PDF
    Previous observations of dark vortices in Neptune’s atmosphere, such as Voyager 2’s Great Dark Spot (1989), have been made in only a few broad-wavelength channels, hampering efforts to determine these vortices’ pressure levels and darkening processes. We analyse spectroscopic observations of a dark spot on Neptune identified by the Hubble Space Telescope as NDS-2018; the spectral observations were made in 2019 by the Multi Unit Spectroscopic Explorer (MUSE) of the Very Large Telescope (Chile). The MUSE medium-resolution 475–933 nm reflection spectra allow us to show that dark spots are caused by darkening at short wavelengths (700 nm). This bright feature is much deeper than previously studied dark-spot companion clouds and may be connected with the circulation that generates and sustains such spots
    corecore