157 research outputs found
Deep Inelastic Scattering in Conformal QCD
We consider the Regge limit of a CFT correlation function of two vector and
two scalar operators, as appropriate to study small-x deep inelastic scattering
in N=4 SYM or in QCD assuming approximate conformal symmetry. After clarifying
the nature of the Regge limit for a CFT correlator, we use its conformal
partial wave expansion to obtain an impact parameter representation encoding
the exchange of a spin j Reggeon for any value of the coupling constant. The
CFT impact parameter space is the three-dimensional hyperbolic space H3, which
is the impact parameter space for high energy scattering in the dual AdS space.
We determine the small-x structure functions associated to the exchange of a
Reggeon. We discuss unitarization from the point of view of scattering in AdS
and comment on the validity of the eikonal approximation.
We then focus on the weak coupling limit of the theory where the amplitude is
dominated by the exchange of the BFKL pomeron. Conformal invariance fixes the
form of the vector impact factor and its decomposition in transverse spin 0 and
spin 2 components. Our formalism reproduces exactly the general results predict
by the Regge theory, both for a scalar target and for gamma*-gamma* scattering.
We compute current impact factors for the specific examples of N=4 SYM and QCD,
obtaining very simple results. In the case of the R-current of N=4 SYM, we show
that the transverse spin 2 component vanishes. We conjecture that the impact
factors of all chiral primary operators of N=4 SYM only have components with 0
transverse spin.Comment: 44+16 pages, 7 figures. Some correction
Inelastic Photoproduction off Nuclei: Gluon Enhancement or Double Color Exchange?
The nuclear enhancement observed in inelastic photoproduction of
should not be interpreted as evidence for an increased gluon density in nuclei.
The nuclear suppression of the production rate due to initial and final state
interactions is calculated and a novel two-step color exchange process is
proposed, which is able to explain the data.Comment: Latex file, 23 pages including 5 Postscript figure
Double-logs, Gribov-Lipatov reciprocity and wrapping
We study analytical properties of the five-loop anomalous dimension of
twist-2 operators at negative even values of Lorentz spin. Following L. N.
Lipatov and A. I. Onishchenko, we have found two possible generalizations of
double-logarithmic equation, which allow to predict a lot of poles of anomalous
dimension of twist-2 operators at all orders of perturbative theory from the
known results. Second generalization is related with the reciprocity-respecting
function, which is a single-logarithmic function in this case. We have found,
that the knowledge of first orders of the reciprocity-respecting function gives
all-loop predictions for the highest poles. Obtained predictions can be used
for the reconstruction of a general form of the wrapping corrections for
twist-2 operators.Comment: 17 pages, references adde
Multi-Regge kinematics and the moduli space of Riemann spheres with marked points
We show that scattering amplitudes in planar N = 4 Super Yang-Mills in
multi-Regge kinematics can naturally be expressed in terms of single-valued
iterated integrals on the moduli space of Riemann spheres with marked points.
As a consequence, scattering amplitudes in this limit can be expressed as
convolutions that can easily be computed using Stokes' theorem. We apply this
framework to MHV amplitudes to leading-logarithmic accuracy (LLA), and we prove
that at L loops all MHV amplitudes are determined by amplitudes with up to L +
4 external legs. We also investigate non-MHV amplitudes, and we show that they
can be obtained by convoluting the MHV results with a certain helicity flip
kernel. We classify all leading singularities that appear at LLA in the Regge
limit for arbitrary helicity configurations and any number of external legs.
Finally, we use our new framework to obtain explicit analytic results at LLA
for all MHV amplitudes up to five loops and all non-MHV amplitudes with up to
eight external legs and four loops.Comment: 104 pages, six awesome figures and ancillary files containing the
results in Mathematica forma
The Regge Limit for Green Functions in Conformal Field Theory
We define a Regge limit for off-shell Green functions in quantum field
theory, and study it in the particular case of conformal field theories (CFT).
Our limit differs from that defined in arXiv:0801.3002, the latter being only a
particular corner of the Regge regime. By studying the limit for free CFTs, we
are able to reproduce the Low-Nussinov, BFKL approach to the pomeron at weak
coupling. The dominance of Feynman graphs where only two high momentum lines
are exchanged in the t-channel, follows simply from the free field analysis. We
can then define the BFKL kernel in terms of the two point function of a simple
light-like bilocal operator. We also include a brief discussion of the gravity
dual predictions for the Regge limit at strong coupling.Comment: 23 pages 2 figures, v2: Clarification of relation of the Regge limit
defined here and previous work in CFT. Clarification of causal orderings in
the limit. References adde
Six-Loop Anomalous Dimension of Twist-Three Operators in N=4 SYM
The result for the six-loop anomalous dimension of twist-three operators in
the planar N=4 SYM theory is presented. The calculations were performed along
the paper arXiv:0912.1624. This result provides a new data for testing the
proposed spectral equations for planar AdS/CFT correspondence.Comment: 19 pages, typos corrected, details adde
Full quantum distribution of contrast in interference experiments between interacting one dimensional Bose liquids
We analyze interference experiments for a pair of independent one dimensional
condensates of interacting bosonic atoms at zero temperature. We show that the
distribution function of fringe amplitudes contains non-trivial information
about non-local correlations within individual condensates and can be
calculated explicitly using methods of conformal field theory. We point out
interesting relations between these distribution functions, the partition
function for a quantum impurity in a one-dimensional Luttinger liquid, and
transfer matrices of conformal field theories. We demonstrate the connection
between interference experiments in cold atoms and a variety of statistical
models ranging from stochastic growth models to two dimensional quantum
gravity. Such connection can be used to design a quantum simulator of unusual
two-dimensional models described by nonunitary conformal field theories with
negative central charges.Comment: 9 pages, 5 figures; Accepted for publication in Nature Physic
Fluctuations, Saturation, and Diffractive Excitation in High Energy Collisions
Diffractive excitation is usually described by the Good--Walker formalism for
low masses, and by the triple-Regge formalism for high masses. In the
Good--Walker formalism the cross section is determined by the fluctuations in
the interaction. In this paper we show that by taking the fluctuations in the
BFKL ladder into account, it is possible to describe both low and high mass
excitation by the Good--Walker mechanism. In high energy collisions the
fluctuations are strongly suppressed by saturation, which implies that pomeron
exchange does not factorise between DIS and collisions. The Dipole Cascade
Model reproduces the expected triple-Regge form for the bare pomeron, and the
triple-pomeron coupling is estimated.Comment: 20 pages, 12 figure
Wrapping corrections, reciprocity and BFKL beyond the sl(2) subsector in N=4 SYM
We consider N=4 SYM and a class of spin N, length-3, twist operators beyond
the well studied sl(2) subsector. They can be identified at one-loop with three
gluon operators. At strong coupling, they are associated with spinning strings
with two spins in AdS5. We exploit the Y-system to compute the leading
weak-coupling four loop wrapping correction to their anomalous dimension. The
result is written in closed form as a function of the spin N. We combine the
wrapping correction with the known four-loop asymptotic Bethe Ansatz
contribution and analyze special limits in the spin N. In particular, at large
N, we prove that a generalized Gribov-Lipatov reciprocity holds. At negative
unphysical spin, we present a simple BFKL-like equation predicting the
rightmost leading poles.Comment: 18 page
- …
