4,257 research outputs found
Electronic correlations in organometallic complexes
We investigate an effective model for organometallic complexes (with
potential uses in optoelectronic devices) via both exact diagonalisation and
the configuration interaction singles (CIS) approximation. This model captures
a number of important features of organometallic complexes, notably the
sensitivity of the radiative decay rate to small chemical changes. We find that
for large parameter ranges the CIS approximation accurately reproduces the low
energy excitations and hence the photophysical properties of the exact
solution. This suggests that electronic correlations do \emph{not} play an
important role in these complexes. This explains why time-dependent density
functional theory works surprisingly well in these complexes.Comment: 11 pages, 6 figure
Asymmetric Conditional Volatility in International Stock Markets
Recent studies show that a negative shock in stock prices will generate more
volatility than a positive shock of similar magnitude. The aim of this paper is
to appraise the hypothesis under which the conditional mean and the conditional
variance of stock returns are asymmetric functions of past information. We
compare the results for the Portuguese Stock Market Index PSI 20 with six other
Stock Market Indices, namely the S&P 500, FTSE100, DAX 30, CAC 40, ASE 20, and
IBEX 35. In order to assess asymmetric volatility we use autoregressive
conditional heteroskedasticity specifications known as TARCH and EGARCH. We
also test for asymmetry after controlling for the effect of macroeconomic
factors on stock market returns using TAR and M-TAR specifications within a VAR
framework. Our results show that the conditional variance is an asymmetric
function of past innovations raising proportionately more during market
declines, a phenomenon known as the leverage effect. However, when we control
for the effect of changes in macroeconomic variables, we find no significant
evidence of asymmetric behaviour of the stock market returns. There are some
signs that the Portuguese Stock Market tends to show somewhat less market
efficiency than other markets since the effect of the shocks appear to take a
longer time to dissipate.Comment: 11 pages, 3 figure
Models of organometallic complexes for optoelectronic applications
Organometallic complexes have potential applications as the optically active
components of organic light emitting diodes (OLEDs) and organic photovoltaics
(OPV). Development of more effective complexes may be aided by understanding
their excited state properties. Here we discuss two key theoretical approaches
to investigate these complexes: first principles atomistic models and effective
Hamiltonian models. We review applications of these methods, such as,
determining the nature of the emitting state, predicting the fraction of
injected charges that form triplet excitations, and explaining the sensitivity
of device performance to small changes in the molecular structure of the
organometallic complexes.Comment: To appear in themed issue of J. Mat. Chem. on the modelling of
material
Biallelic mutations in valyl-tRNA synthetase gene VARS are associated with a progressive neurodevelopmental epileptic encephalopathy.
Aminoacyl-tRNA synthetases (ARSs) function to transfer amino acids to cognate tRNA molecules, which are required for protein translation. To date, biallelic mutations in 31 ARS genes are known to cause recessive, early-onset severe multi-organ diseases. VARS encodes the only known valine cytoplasmic-localized aminoacyl-tRNA synthetase. Here, we report seven patients from five unrelated families with five different biallelic missense variants in VARS. Subjects present with a range of global developmental delay, epileptic encephalopathy and primary or progressive microcephaly. Longitudinal assessment demonstrates progressive cortical atrophy and white matter volume loss. Variants map to the VARS tRNA binding domain and adjacent to the anticodon domain, and disrupt highly conserved residues. Patient primary cells show intact VARS protein but reduced enzymatic activity, suggesting partial loss of function. The implication of VARS in pediatric neurodegeneration broadens the spectrum of human diseases due to mutations in tRNA synthetase genes
Designing organometallic compounds for catalysis and therapy
Bioorganometallic chemistry is a rapidly developing area of research. In recent years organometallic compounds have provided a rich platform for the design of effective catalysts, e.g. for olefin metathesis and transfer hydrogenation. Electronic and steric effects are used to control both the thermodynamics and kinetics of ligand substitution and redox reactions of metal ions, especially Ru II. Can similar features be incorporated into the design of targeted organometallic drugs? Such complexes offer potential for novel mechanisms of drug action through incorporation of outer-sphere recognition of targets and controlled activation features based on ligand substitution as well as metal- and ligand-based redox processes. We focus here on η 6-arene, η 5-cyclopentadienyl sandwich and half-sandwich complexes of Fe II, Ru II, Os II and Ir III with promising activity towards cancer, malaria, and other conditions. © 2012 The Royal Society of Chemistry
Dynamic Phase Transition, Universality, and Finite-size Scaling in the Two-dimensional Kinetic Ising Model in an Oscillating Field
We study the two-dimensional kinetic Ising model below its equilibrium
critical temperature, subject to a square-wave oscillating external field. We
focus on the multi-droplet regime where the metastable phase decays through
nucleation and growth of many droplets of the stable phase. At a critical
frequency, the system undergoes a genuine non-equilibrium phase transition, in
which the symmetry-broken phase corresponds to an asymmetric stationary limit
cycle for the time-dependent magnetization. We investigate the universal
aspects of this dynamic phase transition at various temperatures and field
amplitudes via large-scale Monte Carlo simulations, employing finite-size
scaling techniques adopted from equilibrium critical phenomena. The critical
exponents, the fixed-point value of the fourth-order cumulant, and the critical
order-parameter distribution all are consistent with the universality class of
the two-dimensional equilibrium Ising model. We also study the cross-over from
the multi-droplet to the strong-field regime, where the transition disappears
Dynamic Phase Transition in a Time-Dependent Ginzburg-Landau Model in an Oscillating Field
The Ginzburg-Landau model below its critical temperature in a temporally
oscillating external field is studied both theoretically and numerically. As
the frequency or the amplitude of the external force is changed, a
nonequilibrium phase transition is observed. This transition separates
spatially uniform, symmetry-restoring oscillations from symmetry-breaking
oscillations. Near the transition a perturbation theory is developed, and a
switching phenomenon is found in the symmetry-broken phase. Our results confirm
the equivalence of the present transition to that found in Monte Carlo
simulations of kinetic Ising systems in oscillating fields, demonstrating that
the nonequilibrium phase transition in both cases belongs to the universality
class of the equilibrium Ising model in zero field. This conclusion is in
agreement with symmetry arguments [G. Grinstein, C. Jayaprakash, and Y. He,
Phys. Rev. Lett. 55, 2527 (1985)] and recent numerical results [G. Korniss,
C.J. White, P. A. Rikvold, and M. A. Novotny, Phys. Rev. E (submitted)].
Furthermore, a theoretical result for the structure function of the local
magnetization with thermal noise, based on the Ornstein-Zernike approximation,
agrees well with numerical results in one dimension.Comment: 16 pp. RevTex, 9 embedded ps figure
Absence of First-order Transition and Tri-critical Point in the Dynamic Phase Diagram of a Spatially Extended Bistable System in an Oscillating Field
It has been well established that spatially extended, bistable systems that
are driven by an oscillating field exhibit a nonequilibrium dynamic phase
transition (DPT). The DPT occurs when the field frequency is on the order of
the inverse of an intrinsic lifetime associated with the transitions between
the two stable states in a static field of the same magnitude as the amplitude
of the oscillating field. The DPT is continuous and belongs to the same
universality class as the equilibrium phase transition of the Ising model in
zero field [G. Korniss et al., Phys. Rev. E 63, 016120 (2001); H. Fujisaka et
al., Phys. Rev. E 63, 036109 (2001)]. However, it has previously been claimed
that the DPT becomes discontinuous at temperatures below a tricritical point
[M. Acharyya, Phys. Rev. E 59, 218 (1999)]. This claim was based on
observations in dynamic Monte Carlo simulations of a multipeaked probability
density for the dynamic order parameter and negative values of the fourth-order
cumulant ratio. Both phenomena can be characteristic of discontinuous phase
transitions. Here we use classical nucleation theory for the decay of
metastable phases, together with data from large-scale dynamic Monte Carlo
simulations of a two-dimensional kinetic Ising ferromagnet, to show that these
observations in this case are merely finite-size effects. For sufficiently
small systems and low temperatures, the continuous DPT is replaced, not by a
discontinuous phase transition, but by a crossover to stochastic resonance. In
the infinite-system limit the stochastic-resonance regime vanishes, and the
continuous DPT should persist for all nonzero temperatures
An in vivo study of the host response to starch-based polymers and composites subcutaneously implanted in rats
Implant failure is one of the major concerns in the biomaterials field. Several factors have been related to the fail but in general these biomaterials do not exhibit comparable
physical, chemical or biological properties to natural tissues and ultimately, these devices can lead to chronic inflammation and foreign-body reactions. Starch-based biodegradable
materials and composites have shown promising properties for a wide range of biomedical applications as well as a reduced capacity to elicit a strong reaction from immune system cells in vitro. In this work, blends of corn starch with ethylene vinyl alcohol (SEVA-C), cellulose acetate (SCA)
and polycaprolactone (SPCL), as well as hydroxyapatite (HA) reinforced starch-based composites, were investigated in vivo. The aim of the work was to assess the host response evoked for starch-based biomaterials, identifying the presence
of key cell types. The tissues surrounding the implant were harvested together with the material and processed histologically for evaluation using immunohistochemistry.
At implant retrieval there was no cellular exudate around the implants and no macroscopic signs of an inflammatory reaction
in any of the animals. The histological analysis of the sectioned interface tissue after immunohistochemical staining using ED1, ED2, CD54, MHC class II and a/b antibodies
showed positively stained cells for all antibodies, except for a/b for all the implantation periods, where it was different for the various polymers and for the period of implantation.
SPCL and SCA composites were the materials that stimulated the greatest cellular tissue responses, but generally biodegradable
starch-based materials did not induce a severe reaction for the studied implantation times, which contrasts with other types of degradable polymeric biomaterials.Fundação para a Ciência e a Tecnologia (FCT
Measurement of the cross-section and charge asymmetry of bosons produced in proton-proton collisions at TeV with the ATLAS detector
This paper presents measurements of the and cross-sections and the associated charge asymmetry as a
function of the absolute pseudorapidity of the decay muon. The data were
collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with
the ATLAS experiment at the LHC and correspond to a total integrated luminosity
of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements
varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the
1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are compared with
predictions based on next-to-next-to-leading-order calculations with various
parton distribution functions and have the sensitivity to discriminate between
them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables,
submitted to EPJC. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
- …
