1,017 research outputs found

    Maximally inhomogeneous G\"{o}del-Farnsworth-Kerr generalizations

    Full text link
    It is pointed out that physically meaningful aligned Petrov type D perfect fluid space-times with constant zero-order Riemann invariants are either the homogeneous solutions found by G\"{o}del (isotropic case) and Farnsworth and Kerr (anisotropic case), or new inhomogeneous generalizations of these with non-constant rotation. The construction of the line element and the local geometric properties for the latter are presented.Comment: 4 pages, conference proceeding of Spanish Relativity Meeting (ERE 2009, Bilbao

    Optimal Monte Carlo Updating

    Get PDF
    Based on Peskun's theorem it is shown that optimal transition matrices in Markov chain Monte Carlo should have zero diagonal elements except for the diagonal element corresponding to the largest weight. We will compare the statistical efficiency of this sampler to existing algorithms, such as heat-bath updating and the Metropolis algorithm. We provide numerical results for the Potts model as an application in classical physics. As an application in quantum physics we consider the spin 3/2 XY model and the Bose-Hubbard model which have been simulated by the directed loop algorithm in the stochastic series expansion framework.Comment: 6 pages, 5 figures, replaced with published versio

    Rotating solenoidal perfect fluids of Petrov type D

    Full text link
    We prove that aligned Petrov type D perfect fluids for which the vorticity vector is not orthogonal to the plane of repeated principal null directions and for which the magnetic part of the Weyl tensor with respect to the fluid velocity has vanishing divergence, are necessarily purely electric or locally rotationally symmetric. The LRS metrics are presented explicitly.Comment: 6 pages, no figure

    Bio-material polylactic acid/poly(butylene adipate-co-terephthalate) blend developed for extrusion- based additive manufacturing

    Get PDF
    Bio-material polylactic acid and poly(butylene adipate-co-terephthalate) were blended to achieve increased ductility of the blend. Cloisite was added to improve the stiffness of the blend. The blends were made into filament suitable for extrusion-based additive manufacturing. Melt flow index of the filament and mechanical properties of the printed bars were tested. Preliminary results showed that the melt flow index increases significantly with cloisite and the modulus of polylactic acid/poly(butylene adipate-co-terephthalate) improved slightly. The notched impact strength of the blend increased with increasing content of cloisite, and it increased significantly after annealing, especially for blends without cloisite

    Parametric Excitation of a Bose-Einstein Condensate: From Faraday Waves to Granulation

    Get PDF
    We explore, both experimentally and theoretically, the response of an elongated Bose-Einstein condensate to modulated interactions. We identify two distinct regimes differing in modulation frequency and modulation strength. Longitudinal surface waves are generated either resonantly or parametrically for modulation frequencies near the radial trap frequency or twice the trap frequency, respectively. The dispersion of these waves, the latter being a Faraday wave, is well-reproduced by a mean-field theory that accounts for the 3D nature of the elongated condensate. In contrast, in the regime of lower modulation frequencies we find that no clear resonances occur, but with increased modulation strength, the condensate forms an irregular granulated distribution that is outside the scope of a mean-field approach. We find that the granulated condensate is characterized by large quantum fluctuations and correlations, which are well-described with single-shot simulations obtained from wavefunctions computed by a beyond mean-field theory at zero temperature, the multiconfigurational time-dependent Hartree for bosons method.Comment: To be published in PRX (2019

    Silent universes with a cosmological constant

    Full text link
    We study non-degenerate (Petrov type I) silent universes in the presence of a non-vanishing cosmological constant L. In contrast to the L=0 case, for which the orthogonally spatially homogeneous Bianchi type I metrics most likely are the only admissible metrics, solutions are shown to exist when L is positive. The general solution is presented for the case where one of the eigenvalues of the expansion tensor is 0.Comment: 11 pages; several typos corrected which were still present in CGQ version; minor change

    Chromatin recruitment of activated AMPK drives fasting response genes co-controlled by GR and PPARα

    Get PDF
    Adaptation to fasting involves both Glucocorticoid Receptor (GRα) and Peroxisome Proliferator-Activated Receptor α (PPARα) activation. Given both receptors can physically interact we investigated the possibility of a genome-wide cross-talk between activated GR and PPARα, using ChIP- and RNA-seq in primary hepatocytes. Our data reveal extensive chromatin co-localization of both factors with cooperative induction of genes controlling lipid/glucose metabolism. Key GR/PPAR co-controlled genes switched from transcriptional antagonism to cooperativity when moving from short to prolonged hepatocyte fasting, a phenomenon coinciding with gene promoter recruitment of phosphorylated AMP-activated protein kinase (AMPK) and blocked by its pharmacological inhibition. In vitro interaction studies support trimeric complex formation between GR, PPARα and phospho-AMPK. Long-term fasting in mice showed enhanced phosphorylation of liver AMPK and GRα Ser211. Phospho-AMPK chromatin recruitment at liver target genes, observed upon prolonged fasting in mice, is dampened by refeeding. Taken together, our results identify phospho-AMPK as a molecular switch able to cooperate with nuclear receptors at the chromatin level and reveal a novel adaptation mechanism to prolonged fasting

    Complete classification of purely magnetic, non-rotating and non-accelerating perfect fluids

    Full text link
    Recently the class of purely magnetic non-rotating dust spacetimes has been shown to be empty (Wylleman, Class. Quant. Grav. 23, 2727). It turns out that purely magnetic rotating dust models are subject to severe integrability conditions as well. One of the consequences of the present paper is that also rotating dust cannot be purely magnetic when it is of Petrov type D or when it has a vanishing spatial gradient of the energy density. For purely magnetic and non-rotating perfect fluids on the other hand, which have been fully classified earlier for Petrov type D (Lozanovski, Class. Quant. Grav. 19, 6377), the fluid is shown to be non-accelerating if and only if the spatial density gradient vanishes. Under these conditions, a new and algebraically general solution is found, which is unique up to a constant rescaling, which is spatially homogeneous of Bianchi type VI0VI_0, has degenerate shear and is of Petrov type I(M)M^\infty) in the extended Arianrhod-McIntosh classification. The metric and the equation of state are explicitly constructed and properties of the model are briefly discussed. We finally situate it within the class of normal geodesic flows with degenerate shear tensor.Comment: 12 pages; introduction partly rewritten, notation made more clear, table of results adde

    Dynamical mean-field theory for bosons

    Full text link
    We discuss the recently developed bosonic dynamical mean-field (B-DMFT) framework, which maps a bosonic lattice model onto the selfconsistent solution of a bosonic impurity model with coupling to a reservoir of normal and condensed bosons. The effective impurity action is derived in several ways: (i) as an approximation to the kinetic energy functional of the lattice problem, (ii) using a cavity approach, and (iii) by using an effective medium approach based on adding a one-loop correction to the selfconsistently defined condensate. To solve the impurity problem, we use a continuous-time Monte Carlo algorithm based on a sampling of a perturbation expansion in the hybridization functions and the condensate wave function. As applications of the formalism we present finite temperature B-DMFT phase diagrams for the bosonic Hubbard model on a 3d cubic and 2d square lattice, the condensate order parameter as a function of chemical potential, critical exponents for the condensate, the approach to the weakly interacting Bose gas regime for weak repulsions, and the kinetic energy as a function of temperature.Comment: 26 pages, 19 figure

    Expanding perfect fluid generalizations of the C-metric

    Full text link
    We reexamine Petrov type D gravitational fields generated by a perfect fluid with spatially homogeneous energy density and in which the flow lines form a timelike non-shearing and non-rotating congruence. It is shown that the anisotropic such spacetimes, which comprise the vacuum C-metric as a limit case, can have \emph{non-zero} expansion, contrary to the conclusion in the original investigation by Barnes (Gen. Rel. Grav. 4, 105 (1973)). This class consists of cosmological models with generically one and at most two Killing vectors. We construct their line element and discuss some important properties. The methods used in this investigation incite to deduce testable criteria regarding shearfree normality and staticity op Petrov type DD spacetimes in general, which we add in an appendix.Comment: 16 pages, extended and amended versio
    corecore