1,017 research outputs found
Maximally inhomogeneous G\"{o}del-Farnsworth-Kerr generalizations
It is pointed out that physically meaningful aligned Petrov type D perfect
fluid space-times with constant zero-order Riemann invariants are either the
homogeneous solutions found by G\"{o}del (isotropic case) and Farnsworth and
Kerr (anisotropic case), or new inhomogeneous generalizations of these with
non-constant rotation. The construction of the line element and the local
geometric properties for the latter are presented.Comment: 4 pages, conference proceeding of Spanish Relativity Meeting (ERE
2009, Bilbao
Optimal Monte Carlo Updating
Based on Peskun's theorem it is shown that optimal transition matrices in
Markov chain Monte Carlo should have zero diagonal elements except for the
diagonal element corresponding to the largest weight. We will compare the
statistical efficiency of this sampler to existing algorithms, such as
heat-bath updating and the Metropolis algorithm. We provide numerical results
for the Potts model as an application in classical physics. As an application
in quantum physics we consider the spin 3/2 XY model and the Bose-Hubbard model
which have been simulated by the directed loop algorithm in the stochastic
series expansion framework.Comment: 6 pages, 5 figures, replaced with published versio
Rotating solenoidal perfect fluids of Petrov type D
We prove that aligned Petrov type D perfect fluids for which the vorticity
vector is not orthogonal to the plane of repeated principal null directions and
for which the magnetic part of the Weyl tensor with respect to the fluid
velocity has vanishing divergence, are necessarily purely electric or locally
rotationally symmetric. The LRS metrics are presented explicitly.Comment: 6 pages, no figure
Bio-material polylactic acid/poly(butylene adipate-co-terephthalate) blend developed for extrusion- based additive manufacturing
Bio-material polylactic acid and poly(butylene adipate-co-terephthalate) were blended to achieve increased ductility of the blend. Cloisite was added to improve the stiffness of the blend. The blends were made into filament suitable for extrusion-based additive manufacturing. Melt flow index of the filament and mechanical properties of the printed bars were tested. Preliminary results showed that the melt flow index increases significantly with cloisite and the modulus of polylactic acid/poly(butylene adipate-co-terephthalate) improved slightly. The notched impact strength of the blend increased with increasing content of cloisite, and it increased significantly after annealing, especially for blends without cloisite
Parametric Excitation of a Bose-Einstein Condensate: From Faraday Waves to Granulation
We explore, both experimentally and theoretically, the response of an
elongated Bose-Einstein condensate to modulated interactions. We identify two
distinct regimes differing in modulation frequency and modulation strength.
Longitudinal surface waves are generated either resonantly or parametrically
for modulation frequencies near the radial trap frequency or twice the trap
frequency, respectively. The dispersion of these waves, the latter being a
Faraday wave, is well-reproduced by a mean-field theory that accounts for the
3D nature of the elongated condensate. In contrast, in the regime of lower
modulation frequencies we find that no clear resonances occur, but with
increased modulation strength, the condensate forms an irregular granulated
distribution that is outside the scope of a mean-field approach. We find that
the granulated condensate is characterized by large quantum fluctuations and
correlations, which are well-described with single-shot simulations obtained
from wavefunctions computed by a beyond mean-field theory at zero temperature,
the multiconfigurational time-dependent Hartree for bosons method.Comment: To be published in PRX (2019
Silent universes with a cosmological constant
We study non-degenerate (Petrov type I) silent universes in the presence of a
non-vanishing cosmological constant L. In contrast to the L=0 case, for which
the orthogonally spatially homogeneous Bianchi type I metrics most likely are
the only admissible metrics, solutions are shown to exist when L is positive.
The general solution is presented for the case where one of the eigenvalues of
the expansion tensor is 0.Comment: 11 pages; several typos corrected which were still present in CGQ
version; minor change
Chromatin recruitment of activated AMPK drives fasting response genes co-controlled by GR and PPARα
Adaptation to fasting involves both Glucocorticoid Receptor (GRα) and Peroxisome Proliferator-Activated Receptor α (PPARα) activation. Given both receptors can physically interact we investigated the possibility of a genome-wide cross-talk between activated GR and PPARα, using ChIP- and RNA-seq in primary hepatocytes. Our data reveal extensive chromatin co-localization of both factors with cooperative induction of genes controlling lipid/glucose metabolism. Key GR/PPAR co-controlled genes switched from transcriptional antagonism to cooperativity when moving from short to prolonged hepatocyte fasting, a phenomenon coinciding with gene promoter recruitment of phosphorylated AMP-activated protein kinase (AMPK) and blocked by its pharmacological inhibition. In vitro interaction studies support trimeric complex formation between GR, PPARα and phospho-AMPK. Long-term fasting in mice showed enhanced phosphorylation of liver AMPK and GRα Ser211. Phospho-AMPK chromatin recruitment at liver target genes, observed upon prolonged fasting in mice, is dampened by refeeding. Taken together, our results identify phospho-AMPK as a molecular switch able to cooperate with nuclear receptors at the chromatin level and reveal a novel adaptation mechanism to prolonged fasting
Complete classification of purely magnetic, non-rotating and non-accelerating perfect fluids
Recently the class of purely magnetic non-rotating dust spacetimes has been
shown to be empty (Wylleman, Class. Quant. Grav. 23, 2727). It turns out that
purely magnetic rotating dust models are subject to severe integrability
conditions as well. One of the consequences of the present paper is that also
rotating dust cannot be purely magnetic when it is of Petrov type D or when it
has a vanishing spatial gradient of the energy density. For purely magnetic and
non-rotating perfect fluids on the other hand, which have been fully classified
earlier for Petrov type D (Lozanovski, Class. Quant. Grav. 19, 6377), the fluid
is shown to be non-accelerating if and only if the spatial density gradient
vanishes. Under these conditions, a new and algebraically general solution is
found, which is unique up to a constant rescaling, which is spatially
homogeneous of Bianchi type , has degenerate shear and is of Petrov type
I( in the extended Arianrhod-McIntosh classification.
The metric and the equation of state are explicitly constructed and
properties of the model are briefly discussed. We finally situate it within the
class of normal geodesic flows with degenerate shear tensor.Comment: 12 pages; introduction partly rewritten, notation made more clear,
table of results adde
Dynamical mean-field theory for bosons
We discuss the recently developed bosonic dynamical mean-field (B-DMFT)
framework, which maps a bosonic lattice model onto the selfconsistent solution
of a bosonic impurity model with coupling to a reservoir of normal and
condensed bosons. The effective impurity action is derived in several ways: (i)
as an approximation to the kinetic energy functional of the lattice problem,
(ii) using a cavity approach, and (iii) by using an effective medium approach
based on adding a one-loop correction to the selfconsistently defined
condensate. To solve the impurity problem, we use a continuous-time Monte Carlo
algorithm based on a sampling of a perturbation expansion in the hybridization
functions and the condensate wave function. As applications of the formalism we
present finite temperature B-DMFT phase diagrams for the bosonic Hubbard model
on a 3d cubic and 2d square lattice, the condensate order parameter as a
function of chemical potential, critical exponents for the condensate, the
approach to the weakly interacting Bose gas regime for weak repulsions, and the
kinetic energy as a function of temperature.Comment: 26 pages, 19 figure
Expanding perfect fluid generalizations of the C-metric
We reexamine Petrov type D gravitational fields generated by a perfect fluid
with spatially homogeneous energy density and in which the flow lines form a
timelike non-shearing and non-rotating congruence. It is shown that the
anisotropic such spacetimes, which comprise the vacuum C-metric as a limit
case, can have \emph{non-zero} expansion, contrary to the conclusion in the
original investigation by Barnes (Gen. Rel. Grav. 4, 105 (1973)). This class
consists of cosmological models with generically one and at most two Killing
vectors. We construct their line element and discuss some important properties.
The methods used in this investigation incite to deduce testable criteria
regarding shearfree normality and staticity op Petrov type spacetimes in
general, which we add in an appendix.Comment: 16 pages, extended and amended versio
- …
