2,315 research outputs found

    The fast UV variability of the active galactic nucleus in Fairall 9

    Full text link
    We present results from a new optical/UV/X-ray monitoring campaign of the luminous Seyfert galaxy Fairall 9 using the Swift satellite. Using the UV-Optical Telescope (UVOT) on Swift, we find correlated optical/UV variability on all time scales ranging from the sampling time (4-days) to the length of the campaign (2.5 months). In one noteworthy event, the UW2-band flux dips by 20% in 4-days, and then recovers equally quickly; this event is not seen in either the optical or the X-ray bands. We argue that this event provides further evidence that a significant fraction of the UV-emission must be driven by irradiation/reprocessing of emission from the central disk. We also use an archival XMM-Newton observation to examine shorter time scale UV/X-ray variability. We find very rapid (<10 ks) UV flares of small amplitude. We show that, unless this emission is non-thermal, we must be seeing the Wien tail from a compact ( 8×1048\times10^4 K) region. The possible association with X-ray microflares suggests that we may be seeing the UV signatures of direct X-ray flare heating of the innermost disk.Comment: Accepted for publication in Ap

    An outburst scenario for the X-ray spectral variability in 3C 111

    Get PDF
    We present a combined Suzaku and Swift BAT broad-band E=0.6-200keV spectral analysis of three 3C 111 observations obtained in 2010. The data are well described with an absorbed power-law continuum and a weak (R~0.2) cold reflection component from distant material. We constrain the continuum cutoff at E_c~150-200keV, which is in accordance with X-ray Comptonization corona models and supports claims that the jet emission is only dominant at much higher energies. Fe XXVI Ly\alpha emission and absorption lines are also present in the first and second observations, respectively. The modelling and interpretation of the emission line is complex and we explore three possibilities. If originating from ionized disc reflection, this should be emitted at r_in> 50r_g or, in the lamp-post configuration, the illuminating source should be at a height of h> 30r_g over the black hole. Alternatively, the line could be modeled with a hot collisionally ionized plasma with temperature kT = 22.0^{+6.1}_{-3.2} keV or a photo-ionized plasma with log\xi=4.52^{+0.10}_{-0.16} erg s^{-1} cm and column density N_H > 3x10^23 cm^{-2}. However, the first and second scenarios are less favored on statistical and physical grounds, respectively. The blue-shifted absorption line in the second observation can be modelled as an ultra-fast outflow (UFO) with ionization parameter log\xi=4.47^{+0.76}_{-0.04} erg s^{-1} cm, column density N_H=(5.3^{+1.8}_{-1.3})x 10^{22} cm^{-2} and outflow velocity v_out = 0.104+/-0.006 c. Interestingly, the parameters of the photo-ionized emission model remarkably match those of the absorbing UFO. We suggest an outburst scenario in which an accretion disc wind, initially lying out of the line of sight and observed in emission, then crosses our view to the source and it is observed in absorption as a mildly-relativistic UFO.Comment: Accepted for publication in MNARS on July 1st 201

    The X-ray spectrum of the cooling-flow quasar H1821+643 : A massive black hole feeding off the intracluster medium

    Full text link
    We present a deep Suzaku observation of H1821+643, an extremely rare example of a powerful quasar hosted by the central massive galaxy of a rich cooling-core cluster of galaxies. Informed by previous Chandra studies of the cluster, we achieve a spectral separation of emission from the active galactic nucleus (AGN) and the intracluster medium (ICM). With a high degree of confidence, we identify the signatures of X-ray reflection/reprocessing by cold and slowly moving material in the AGN's immediate environment. The iron abundance of this matter is found to be significantly sub-solar (Z~0.4Zsun), an unusual finding for powerful AGN but in line with the idea that this quasar is feeding from the ICM via a Compton-induced cooling flow. We also find a subtle soft excess that can be described phenomenologically (with an additional black body component) or as ionized X-ray reflection from the inner regions of a high inclination (i=57 degrees) accretion disk around a spinning (a>0.4) black hole. We describe how the ionization state of the accretion disk can be used to constrain the Eddington fraction of the source. Applying these arguments to our spectrum implies an Eddington fraction of 0.25-0.5, with an associated black hole mass of 3-6x10^9Msun.Comment: 5 pages, accepted for publication in The Astrophysical Journal Letter

    The view of AGN-host alignment via reflection spectroscopy

    Full text link
    The fuelling of active galactic nuclei (AGN) - via material propagated through the galactic disc or via minor mergers - is expected to leave an imprint on the alignment of the sub-pc disc relative to the host galaxy's stellar disc. Determining the inclination of the inner disc usually relies on the launching angle of the jet; here instead we use the inclination derived from reflection fits to a sample of AGN. We determine the distorting effect of unmodeled Fe XXV/XXVI features and, via extensive simulations, determine the difference in disc inclination resulting from the use of relxill compared to reflionx. We compare inner disc inclinations to those for the host galaxy stellar disc derived from the Hubble formula and, via Monte-Carlo simulations, find a strong lack of a correlation (at >> 5-sigma) implying either widespread feeding via mergers if we assume the sample to be homogeneous, or that radiative disc warps are distorting our view of the emission. However, we find that by removing a small (~1/5) subset of AGN, the remaining sample is consistent with random sampling of an underlying 1:1 correlation (at the 3-sigma level). A heterogenous sample would likely imply that our view is not dominated by radiative disc warps but instead by different feeding mechanisms with the majority consistent with coplanar accretion (although this may be the result of selection bias), whilst a smaller but not insignificant fraction may have been fuelled by minor mergers in the recent history of the host galaxy.Comment: 10 pages, 5 figures, accepted to MNRA

    Properties of AGN coronae in the NuSTAR era

    Get PDF
    The focussing optics of NuSTAR have enabled high signal-to-noise spectra to be obtained from many X-ray bright Active Galactic Nuclei (AGN) and Galactic Black Hole Binaries (BHB). Spectral modelling then allows robust characterization of the spectral index and upper energy cutoff of the coronal power-law continuum, after accounting for reflection and absorption effects. Spectral-timing studies, such as reverberation and broad iron line fitting, of these sources yield coronal sizes, often showing them to be small and in the range of 3 to 10 gravitational radii in size. Our results indicate that coronae are hot and radiatively compact, lying close to the boundary of the region in the compactness - temperature diagram which is forbidden due to runaway pair production. The coincidence suggests that pair production and annihilation are essential ingredients in the coronae of AGN and BHB and that they control the shape of the observed spectra.Comment: 11 pages, 8 figures, accepted for publication in MNRA
    corecore