34 research outputs found

    Effects of Elevated Temperature and Carbon Dioxide on the Growth and Survival of Larvae and Juveniles of Three Species of Northwest Atlantic Bivalves

    Get PDF
    Rising CO2 concentrations and water temperatures this century are likely to have transformative effects on many coastal marine organisms. Here, we compared the responses of two life history stages (larval, juvenile) of three species of calcifying bivalves (Mercenaria mercenaria, Crassostrea virginica, and Argopecten irradians) to temperatures (24 and 28°C) and CO2 concentrations (∼250, 390, and 750 ppm) representative of past, present, and future summer conditions in temperate estuaries. Results demonstrated that increases in temperature and CO2 each significantly depressed survival, development, growth, and lipid synthesis of M. mercenaria and A. irradians larvae and that the effects were additive. Juvenile M. mercenaria and A. irradians were negatively impacted by higher temperatures while C. virginica juveniles were not. C. virginica and A. irradians juveniles were negatively affected by higher CO2 concentrations, while M. mercenaria was not. Larvae were substantially more vulnerable to elevated CO2 than juvenile stages. These findings suggest that current and future increases in temperature and CO2 are likely to have negative consequences for coastal bivalve populations

    The behaviour of giant clams (Bivalvia: Cardiidae: Tridacninae)

    Get PDF
    Giant clams, the largest living bivalves, live in close association with coral reefs throughout the Indo-Pacific. These iconic invertebrates perform numerous important ecological roles as well as serve as flagship species—drawing attention to the ongoing destruction of coral reefs and their associated biodiversity. To date, no review of giant clams has focussed on their behaviour, yet this component of their autecology is critical to their life history and hence conservation. Almost 100 articles published between 1865 and 2014 include behavioural observations, and these have been collated and synthesised into five sections: spawning, locomotion, feeding, anti-predation, and stress responses. Even though the exact cues for spawning in the wild have yet to be elucidated, giant clams appear to display diel and lunar periodicities in reproduction, and for some species, peak breeding seasons have been established. Perhaps surprisingly, giant clams have considerable mobility, ranging from swimming and gliding as larvae to crawling in juveniles and adults. Chemotaxis and geotaxis have been established, but giant clams are not phototactic. At least one species exhibits clumping behaviour, which may enhance physical stabilisation, facilitate reproduction, or provide protection from predators. Giant clams undergo several shifts in their mode of acquiring nutrition; starting with a lecithotrophic and planktotrophic diet as larvae, switching to pedal feeding after metamorphosis followed by the transition to a dual mode of filter feeding and phototrophy once symbiosis with zooxanthellae (Symbiodinium spp.) is established. Because of their shell weight and/or byssal attachment, adult giant clams are unable to escape rapidly from threats using locomotion. Instead, they exhibit a suite of visually mediated anti-predation behaviours that include sudden contraction of the mantle, valve adduction, and squirting of water. Knowledge on the behaviour of giant clams will benefit conservation and restocking efforts and help fine-tune mariculture techniques. Understanding the repertoire of giant clam behaviours will also facilitate the prediction of threshold levels for sustainable exploitation as well as recovery rates of depleted clam populations

    Biological Assessment of Eastern Oysters (\u3cem\u3eCrassostrea virginica\u3c/em\u3e) Inhabiting Reef, Mangrove, Seawall, and Restoration Substrates

    No full text
    The eastern oyster, Crassostrea virginica, plays an essential functional role in many estuarine ecosystems on the east and Gulf coasts of the USA. Oysters form biogenic reefs but also live on alternative intertidal substrates such as artificial surfaces and mangrove prop roots. The hypothesis tested in this study was that non-reef-dwelling oysters (i.e., those inhabiting mangrove, seawall, or restoration substrates) were similar to their reef-dwelling counterparts based upon a suite of biological parameters. The study was carried out at six sites in three zones in Tampa Bay on the west coast of Florida using monthly samples collected from October 2008-September 2009. The timing of gametogenesis and spawning, fecundity, and juvenile recruitment were the same for oysters in all four habitats. Oyster size (measured as shell height), density, and Perkinsus marinus infection intensity and prevalence varied among habitats. This study indicates that oysters on mangroves, seawalls, and oyster restoration substrates contribute larvae, habitats for other species, and likely other ecosystem benefits similar to those of intertidal oyster reefs in Tampa Bay. Oysters from alternative intertidal substrates should be included in any system wide studies of oyster abundance, clearance rates, and the provision of alternate habitats, especially in highly developed estuaries
    corecore