56 research outputs found
Resistance of plant–plant networks to biodiversity loss and secondary extinctions following simulated environmental changes
Plant interactions are fundamental processes for structuring plant communities and are an important mechanism governing the response of plant species and communities to environmental changes. Thus, understanding the role played by the interaction network in modulating the impact of environmental changes on plant community composition and diversity is crucial. Here, we aimed to develop a new analytical and conceptual framework to evaluate the responses of plant communities to environmental changes. * This framework uses functional traits as sensitivity measures for simulated environmental changes and assesses the consequences of microhabitat loss. We show here its application to an alpine plant community where we recorded functional traits [specific leaf area (SLA) and leaf dry matter content (LDMC)] of all plants associated with three foundation species or the surrounding open areas. We then simulated primary species loss based on different scenarios of environmental change and explored community persistence to the loss of foundation species. * Generally, plant community responses differed among environmental change scenarios. In a scenario of increasing drought alone (i.e. species with lower LDMC were lost first) or increasing drought with increasing temperature (i.e. species with lower LDMC and higher SLA were lost first), the plant community resisted because drought-tolerant foundation species tolerated those deteriorating conditions. However, in scenarios with increasing nitrogen input (i.e. species having lower SLA were lost earlier), foundation species accelerated species loss due to their early primary extinctions and the corresponding secondary extinctions of species associated to their microhabitat. * The resistance of a plant community depends on the driver of environmental change, meaning that the prediction of the fate of this system is depending on the knowledge of the main driver of environmental change. Our framework provides a mechanistic understanding of an ecosystem response to such environmental changes thanks to the integration of biology-informed criteria of species sensitivities to environmental factors into a network of interacting species. A lay summary is available for this article
Perspectives for ecological networks in plant ecology
Background: Plant communities are usually characterised by species composition and abundance, but also underlie a multitude of complex interactions that we have only recently started unveiling. Yet, we are still far from understanding ecological and evolutionary processes shaping the network-level organisation of plant diversity, and to what extent these processes are specific to certain spatial scales or environments. Aims: Understanding the systemic mechanisms of plant-plant network assembly and their consequences for diversity patterns. Methods: We review recent methods and results of plant-plant networks. Results: We synthetize how plant-plant networks can help us to: (a) assess how competition and facilitation may balance each other through the network; (b) analyse the role of plant-plant interactions beyond pairwise competition in structuring plant communities, and (c) forecast the ecological implications of complex species dependencies. We discuss pros and cons, assumptions and limitations of different approaches used for inferring plant-plant networks. Conclusions: We propose novel opportunities for advancing plant ecology by using ecological networks that encompass different ecological levels and spatio-temporal scales, and incorporate more biological information. Embracing networks of interactions among plants can shed new light on mechanisms driving evolution and ecosystem functioning, helping us to mitigate diversity loss
Smart balancing of E-scooter sharing systems via deep reinforcement learning: a preliminary study
Nowadays, micro-mobility sharing systems have become extremely popular. Such systems consist in fleets of dockless electric vehicles which are deployed in cities, and used by citizens to move in a more ecological and flexible way. Unfortunately, one of the issues related to such technologies is its intrinsic load imbalance, since users can pick up and drop off the electric vehicles where they prefer. In this paper we present ESB-DQN, a multi-agent system for E-Scooter Balancing (ESB) based on Deep Reinforcement Learning where agents are implemented as Deep Q-Networks (DQN). ESB-DQN offers suggestions to pick or return e-scooters in order to make the fleet usage and sharing as balanced as possible, still ensuring that the original plans of the user undergo only minor changes. The main contributions of this paper include a careful analysis of the state of the art, an innovative customer-oriented rebalancing strategy, the integration of state-of-the-art libraries for deep Reinforcement Learning into the existing ODySSEUS simulator of mobility sharing systems, and preliminary but promising experiments that suggest that our approach is worth further exploration
mTOR Inhibition limits LPS induced acute kidney injury and ameliorates hallmarks of cellular senescence
The effects of shrub encroachment on arthropod communities depend on grazing history
Unsustainable grazing is a major driver of biodiversity loss worldwide. Conservation actions such as grazing exclusion are effective strategies for halting such decline. However, we still know little how the long-term impact of grazing exclusion depends on plant–animal interactions such as those between encroaching unpalatable shrubs and ground arthropods. Here, we assessed how encroaching, unpalatable shrub species (Sarcopoterium spinosum) mediates the effects of grazing exclusion on the recovery of arthropod communities. We used a large-scale, long-term (15–25 years) grazing exclusion experiment complemented with local-scale treatments that consider the presence or absence of shrubs. We found that halting overgrazing supported the recovery of biodiversity in the long-term. Notably, the impacts of shrubs on arthropod diversity vary with grazing history. Shrubs decreased arthropod abundance by three folds, affecting particularly flies, butterflies, hymenopteran, and beetles in protected areas. Yet, shrubs had positive effects on animal diversity, particularly centipedes and millipeds in grazed areas. On the one hand, shrubs may enhance biodiversity recovery in overgrazed systems; on the other hand, shrubs may be detrimental in protected areas, in the absence of grazing. Understanding how plant–animal interactions vary with historical land-use change is key for biodiversity conservation and recovery and for integrated management of agroecosystems
Glacier retreat decreases mutualistic network robustness over spacetime
Glaciers are retreating worldwide at an ever-increasing rate, exposing new ice-free areas to ecological succession. This process leads to changes in biodiversity and potentially to novel species interactions. However, we still have a limited understanding of how glacier retreat influences species interaction networks, particularly the structure and robustness of mutualistic networks. After reconstructing plant–pollinator networks along a 140-years chronosequence on a glacier foreland, we address the effects of glacier retreat on network structure and robustness. Our results show that the prevalence of different network motifs changes over spacetime, leading to a decrease of network robustness. With glacier retreat, mutualistic networks shift from highly connected with diverse specialist interactions to loosely connected with few generalist interactions. Furthermore, despite the turnover of plant species, we find that species structural roles remain constant over spacetime while depending on species identity. Our findings suggest that glacier retreat reshuffles mutualistic networks with motifs posing low robustness, leading to increased fragility. Understanding the assembly and breaking down of species interaction networks provides novel insights into the development and stability of novel, post-glacial ecological systems facing glacier extinction
Life in harsh environments : carabid and spider trait types and functional diversity on a debris-covered glacier and along its foreland
1. Patterns of species richness and species assemblage composition of ground-dwelling arthropods in primary successions along glacier forelands are traditionally described using a taxonomic approach. On the other hand, the functional trait approach could ensure a better characterisation of their colonisation strategies in these types of habitat. 2. The functional trait approach was applied to investigate patterns of functional diversity and life-history traits of ground beetles and spiders on an alpine debris-covered glacier and along its forefield in order to describe their colonisation strategies. 3. Ground beetles and spiders were sampled at different successional stages, representing five stages of deglaciation. 4. The results show that the studied glacier hosts ground beetle and spider assemblages that are mainly characterised by the following traits: walking colonisers, ground hunters and small-sized species. These traits are typical of species living in cold, wet, and gravelly habitats. The diversity of functional traits in spiders increased along the succession, and in both carabids and spiders, life-history traits follow the \u2018addition and persistence model\u2019. Accordingly, there is no turnover but there is an addition of new traits and a variation in their proportion within each species assemblage along the succession. The distribution of ground beetles and spiders along the glacier foreland and on the glacier seems to be driven by dispersal ability and foraging strategy. 5. The proposed functional approach improves knowledge of the adaptive strategies of ground-dwelling arthropods colonising glacier surfaces and recently deglaciated terrains, which represent landforms quickly changing due to global warming
Network motifs involving both competition and facilitation predict biodiversity in alpine plant communities
Biodiversity is driven by complex associations among species, but ecologists often look only at competitive or facilitative interactions either independently or only for few species at a time. Using a large dataset of mountain ecosystems encompassing more than 2,000 species across the globe, we analyze the prevalence and importance of both positive and negative associations among plants. Our findings indicate that facilitation and competition between plant species must be studied together in order to explain biodiversity change.Biological diversity depends on multiple, cooccurring ecological interactions. However, most studies focus on one interaction type at a time, leaving community ecologists unsure of how positive and negative associations among species combine to influence biodiversity patterns. Using surveys of plant populations in alpine communities worldwide, we explore patterns of positive and negative associations among triads of species (modules) and their relationship to local biodiversity. Three modules, each incorporating both positive and negative associations, were overrepresented, thus acting as "network motifs." Furthermore, the overrepresentation of these network motifs is positively linked to species diversity globally. A theoretical model illustrates that these network motifs, based on competition between facilitated species or facilitation between inferior competitors, increase local persistence. Our findings suggest that the interplay of competition and facilitation is crucial for maintaining biodiversity.All study data are included in the article and/or supporting information
Impacts of deglaciation on biodiversity and ecosystem function
Glaciers and glacially influenced ecosystems host unique biodiversity spanning all kingdoms of life, but glaciers are retreating as the global climate warms, threatening specialist species, ecosystem functions and stability. We outline the impacts and consequences of glacier retreat, identifying key drivers and mechanisms of change, focusing on biodiversity and interactions among glacier, terrestrial, freshwater and marine ecosystems. We identify global glacial biodiversity patterns and local nuances, highlighting taxa that are likely to thrive or decline with the loss of glaciers. Following glacier retreat, the availability and size of ice-free areas initially increase, leading to a ‘biodiversity peak’. However, as glaciers disappear, the formation of novel habitats decreases while communities become more homogeneous and competition increases, leading to local-to-regional biodiversity decline. Glacier loss impacts multiple ecosystem functions that contribute to climate regulation, freshwater resources, carbon and nutrient cycling, soil development, primary productivity, and food web stability. Key challenges in glacier ecosystem science include advancing knowledge of the relationships between biodiversity and ecosystem functions and quantifying species interactions at local-to-global scales to improve mechanistic understanding. Such advances will enhance prediction of how biodiversity will change with the loss of glaciers, enabling informed and effective conservation and management
Key concepts and a world‐wide look at plant recruitment networks
Plant–plant interactions are major determinants of the dynamics of terrestrial ecosystems. There is a long tradition in the study of these interactions, their mechanisms and their consequences using experimental, observational and theoretical approaches. Empirical studies overwhelmingly focus at the level of species pairs or small sets of species. Although empirical data on these interactions at the community level are scarce, such studies have gained pace in the last decade. Studying plant–plant interactions at the community level requires knowledge of which species interact with which others, so an ecological networks approach must be incorporated into the basic toolbox of plant community ecology. The concept of recruitment networks (RNs) provides an integrative framework and new insights for many topics in the field of plant community ecology. RNs synthesise the set of canopy–recruit interactions in a local plant assemblage. Canopy–recruit interactions describe which (“canopy”) species allow the recruitment of other species in their vicinity and how. Here we critically review basic concepts of ecological network theory as they apply to RNs. We use RecruitNet, a recently published worldwide data set of canopy–recruit interactions, to describe RN patterns emerging at the interaction, species, and community levels, and relate them to different abiotic gradients. Our results show that RNs can be sampled with high accuracy. The studies included in RecruitNet show a very high mean network completeness (95%), indicating that undetected canopy–recruit pairs must be few and occur very infrequently. Across 351,064 canopy–recruit pairs analysed, the effect of the interaction on recruitment was neutral in an average of 69% of the interactions per community, but the remaining interactions were positive (i.e. facilitative) five times more often than negative (i.e. competitive), and positive interactions had twice the strength of negative ones. Moreover, the frequency and strength of facilitation increases along a climatic aridity gradient worldwide, so the demography of plant communities is increasingly strongly dependent on facilitation as aridity increases. At network level, species can be ascribed to four functional types depending on their position in the network: core, satellite, strict transients and disturbance-dependent transients. This functional structure can allow a rough estimation of which species are more likely to persist. In RecruitNet communities, this functional structure most often departs from random null model expectation and could allow on average the persistence of 77% of the species in a local community. The functional structure of RNs also varies along the aridity gradient, but differently in shrubland than in forest communities. This variation suggests an increase in the probability of species persistence with aridity in forests, while such probability remains roughly constant along the gradient in shrublands. The different functional structure of RNs between forests and shrublands could contribute to explaining their co-occurrence as alternative stable states of the vegetation under the same climatic conditions. This review is not exhaustive of all the topics that can be addressed using the framework of RNs, but instead aims to present some of the interesting insights that it can bring to the field of plant community ecology
- …
