2,301 research outputs found

    Sequential Tunneling through Molecular Spin Rings

    Full text link
    We consider electrical transport through molecules with Heisenberg-coupled spins arranged in a ring structure in the presence of an easy-axis anisotropy. The molecules are coupled to two metallic leads and a gate. In the charged state of the ring, a Zener double-exchange mechanism links transport properties to the underlying spin structure. This leads to a remarkable contact-site dependence of the current, which for an antiferromagnetic coupling of the spins can lead to a total suppression of the zero-bias conductance when the molecule is contacted at adjacent sites.Comment: 4 pages, 3 figure

    RKKY Interaction On Surfaces of Topological Insulators With Superconducting Proximity Effect

    Full text link
    We consider the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between magnetic impurities on the surface of a three-dimensional topological insulator with proximity induced superconductivity. A superconductor placed on the top of the topological insulator induces a gap in the surface electron states and gives rise to a long-ranged in-plane antiferromagnetic RKKY interaction. This interaction is frustrated due to strong spin-orbit coupling, decays as 1/r1/r for r<ξr<\xi, where rr is the distance between two magnetic impurities and ξ\xi the superconducting coherence length, and dominates over the ferromagnetic and Dzyaloshinskii-Moriya type interactions for r>ξr>\xi. We find the condition for the Yu-Shiba-Rusinov intragap states that are bound to the magnetic impurities.Comment: 5 pages, 3 figure

    Hardy-Littlewood-Sobolev Inequalities via Fast Diffusion Flows

    Full text link
    We give a simple proof of the λ=d2\lambda = d-2 cases of the sharp Hardy-Littlewood-Sobolev inequality for d3d\geq 3, and the sharp Logarithmic Hardy-Littlewood-Sobolev inequality for d=2d=2 via a monotone flow governed by the fast diffusion equation

    Effect of strain on hyperfine-induced hole-spin decoherence in quantum dots

    Full text link
    We theoretically consider the effect of strain on the spin dynamics of a single heavy-hole (HH) confined to a self-assembled quantum dot and interacting with the surrounding nuclei via hyperfine interaction. Confinement and strain hybridize the HH states, which show an exponential decay for a narrowed nuclear spin bath. For different strain configurations within the dot, the dependence of the spin decoherence time T2T_2 on external parameters is shifted and the non-monotonic dependence of the peak is altered. Application of external strain yields considerable shifts in the dependence of T2T_2 on external parameters. We find that external strain affects mostly the effective hyperfine coupling strength of the conduction band (CB), indicating that the CB admixture of the hybridized HH states plays a crucial role in the sensitivity of T2T_2 on strain

    Magnonic Quadrupole Topological Insulator in Antiskyrmion Crystals

    Full text link
    When the crystalline symmetries that protect a higher-order topological phase are not preserved at the boundaries of the sample, gapless hinge modes or in-gap corner states cannot be stabilized. Therefore, careful engineering of the sample termination is required. Similarly, magnetic textures, whose quantum fluctuations determine the supported magnonic excitations, tend to relax to new configurations that may also break crystalline symmetries when boundaries are introduced. Here we uncover that antiskyrmion crystals provide an experimentally accessible platform to realize a magnonic topological quadrupole insulator, whose hallmark signature are robust magnonic corner states. Furthermore, we show that tuning an applied magnetic field can trigger the self-assembly of antiskyrmions carrying a fractional topological charge along the sample edges. Crucially, these fractional antiskyrmions restore the symmetries needed to enforce the emergence of the magnonic corner states. Using the machinery of nested Wilson loops, adapted to magnonic systems supported by noncollinear magnetic textures, we demonstrate the quantization of the bulk quadrupole moment, edge dipole moments, and corner charges

    Datta-Das transistor with enhanced spin control

    Full text link
    We consider a two-channel spin transistor with weak spin-orbit induced interband coupling. We show that the coherent transfer of carriers between the coupled channels gives rise to an \textit{additional} spin rotation. We calculate the corresponding spin-resolved current in a Datta-Das geometry and show that a weak interband mixing leads to enhanced spin control.Comment: Added ref. + corrected typo

    A quantum magnetic RC circuit

    Full text link
    We propose a setup that is the spin analog of the charge-based quantum RC circuit. We define and compute the spin capacitance and the spin resistance of the circuit for both ferromagnetic (FM) and antiferromagnetic (AF) systems. We find that the antiferromagnetic setup has universal properties, but the ferromagnetic setup does not. We discuss how to use the proposed setup as a quantum source of spin excitations, and put forward a possible experimental realization using ultracold atoms in optical lattices
    corecore