7,072 research outputs found
Families of Linear Efficiency Programs based on Debreu's Loss Function
Gerard Debreu introduced a well known radial efficiency measure which he called a “coefficient of resource utilization.†He derived this scalar from a much less well known “dead loss†function that characterizes the monetary value sacrificed to inefficiency, and which is to be minimized subject to a normalization condition. We use Debreu’s loss function, together with a variety of normalization conditions, to generate several popular families of linear efficiency programs. Our methodology also can be employed to generate entirely new families of linear efficiency programs.
Station keeping of high power communication satellites
Station keeping of high power communication satellite
Titanium honeycomb structure
A brazed titanium honeycomb sandwich system for supersonic transport wing cover panels provides the most efficient structure spanwise, chordwise, and loadwise. Flutter testing shows that high wing stiffness is most efficient in a sandwich structure. This structure also provides good thermal insulation if liquid fuel is carried in direct contact with the wing structure in integral fuel tanks
Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop (OIPLL)
Experimental results are reported on an optical frequency synthesizer for use in dynamic dense wavelength-division-multiplexing networks, based on a tuneable laser in an optical injection phase-locked loop for rapid wavelength locking. The source combines high stability (50 dB), narrow linewidth (10 MHz), and fast wavelength switching (<10 ns)
Development of a non-linear simulation for generic hypersonic vehicles - ASUHS1
A nonlinear simulation is developed to model the longitudinal motion of a vehicle in hypersonic flight. The equations of motion pertinent to this study are presented. Analytic expressions for the aerodynamic forces acting on a hypersonic vehicle which were obtained from Newtonian Impact Theory are further developed. The control surface forces are further examined to incorporate vehicle elastic motion. The purpose is to establish feasible equations of motion which combine rigid body, elastic, and aeropropulsive dynamics for use in nonlinear simulations. The software package SIMULINK is used to implement the simulation. Also discussed are issues needing additional attention and potential problems associated with the implementation (with proposed solutions)
Robust Face Recognition in Rotated Eigen Space
Face recognition is a very complex classification problem due to nuisance variations in different conditions. Most face recognition approaches either assume constant lighting condition or standard facial expressions, thus cannot deal with both kinds of variations simultaneously. Principal Component Analysis (PCA) cannot handle complex pattern variations such as illumination and expression. Adaptive PCA rotates eigenspace to extract more representative features thus improving the performance. In this paper, we present a way to extract various sets of features by different eigenspace rotations and propose a method to fuse these features to generate nonorthogonal mappings for face recognition. The proposed method is tested on the Asian Face Database with 856 images from 107 subjects with 5 lighting conditions and 4 expressions. We register only one normally lit neutral face image and test on the remaining face images with variations. Experiments show a 95% classification accuracy and a 20% reduction in error rate. This illustrates that the fused features can provide significantly improved pattern classification
State-of-the-art survey of dissimilar metal joining by solid state welding
State-of-the-art of dissimilar metal joining by solid state diffusion bonding and roll and press welding, emphasizing stainless steel and aluminum allo
Dual-Frequency Observations of 140 Compact, Flat-Spectrum Active Galactic Nuclei for Scintillation-Induced Variability
The 4.9 GHz Micro-Arcsecond Scintillation-Induced Variability (MASIV) Survey
detected a drop in Interstellar Scintillation (ISS) for sources at redshifts z
> 2, indicating an apparent increase in angular diameter or a decrease in flux
density of the most compact components of these sources, relative to their
extended emission. This can result from intrinsic source size effects or
scatter broadening in the Intergalactic Medium (IGM), in excess of the expected
(1+z)^0.5 angular diameter scaling of brightness temperature limited sources
due to cosmological expansion. We report here 4.9 GHz and 8.4 GHz observations
and data analysis for a sample of 140 compact, flat-spectrum sources which may
allow us to determine the origin of this angular diameter-redshift relation by
exploiting their different wavelength dependences. In addition to using ISS as
a cosmological probe, the observations provide additional insight into source
morphologies and the characteristics of ISS. As in the MASIV Survey, the
variability of the sources is found to be significantly correlated with
line-of-sight H-alpha intensities, confirming its link with ISS. For 25
sources, time delays of about 0.15 to 3 days are observed between the
scintillation patterns at both frequencies, interpreted as being caused by a
shift in core positions when probed at different optical depths. Significant
correlation is found between ISS amplitudes and source spectral index; in
particular, a large drop in ISS amplitudes is observed at spectral indices of <
-0.4 confirming that steep spectrum sources scintillate less. We detect a
weakened redshift dependence of ISS at 8.4 GHz over that at 4.9 GHz, with the
mean variance at 4-day timescales reduced by a factor of 1.8 in the z > 2
sources relative to the z < 2 sources, as opposed to the factor of 3 decrease
observed at 4.9 GHz. This suggests scatter broadening in the IGM.Comment: 30 pages, 14 figures, accepted for publication in the Astronomical
Journa
- …
