54 research outputs found
Phosphorus–iron interaction in sediments : can an electrode minimize phosphorus release from sediments?
All restoration strategies to mitigate eutrophication depend on the success of phosphorus (P) removal from the water body. Therefore, the inputs from the watershed and from the enriched sediments, that were the sink of most P that has been discharged in the water body, should be controlled. In sediments, iron (hydr)oxides minerals are potent repositories of P and the release of P into the water column may occur upon dissolution of the iron (hydr)oxides mediated by iron reducing bacteria. Several species of these bacteria are also known as electroactive microorganisms and have been recently identified in lake sediments. This capacity of bacteria to transfer electrons to electrodes, producing electricity from the oxidation of organic matter, might play a role on P release in sediments. In the present work it is discussed the relationship between phosphorus and iron cycling as well as the application of an electrode to work as external electron acceptor in sediments, in order to prevent metal bound P dissolution under anoxic conditions.The authors are grateful to two anonymous reviewers of a previous version of the manuscript for the constructive comments and suggestions. The authors also acknowledge the Grant SFRH/BPD/80528/2011 from the Foundation for Science and Technology, Portugal, awarded to Gilberto Martins
The self-organizing fractal theory as a universal discovery method: the phenomenon of life
A universal discovery method potentially applicable to all disciplines studying organizational phenomena has been developed. This method takes advantage of a new form of global symmetry, namely, scale-invariance of self-organizational dynamics of energy/matter at all levels of organizational hierarchy, from elementary particles through cells and organisms to the Universe as a whole. The method is based on an alternative conceptualization of physical reality postulating that the energy/matter comprising the Universe is far from equilibrium, that it exists as a flow, and that it develops via self-organization in accordance with the empirical laws of nonequilibrium thermodynamics. It is postulated that the energy/matter flowing through and comprising the Universe evolves as a multiscale, self-similar structure-process, i.e., as a self-organizing fractal. This means that certain organizational structures and processes are scale-invariant and are reproduced at all levels of the organizational hierarchy. Being a form of symmetry, scale-invariance naturally lends itself to a new discovery method that allows for the deduction of missing information by comparing scale-invariant organizational patterns across different levels of the organizational hierarchy
Impaired phagocytosis and reactive oxygen species production in phagocytes is associated with systemic vasculitis
BACKGROUND: Anti-neutrophil cytoplasmic antibodies associated vasculitides (AAV) is a group of autoimmune diseases, characterized by small vessel inflammation. Phagocytes such as neutrophils and monocytes are the main effector cells found around the inflamed vessel wall. Therefore, we wanted to investigate aspects of function and activation of these cells in patients with AAV.METHODS: Flow cytometry was used to evaluate: the expression of activation markers (CD11c, CD62L, CD177 and C5aR); the number of recently released neutrophils from bone marrow, defined as CD10(-)D16(low) cells in peripheral blood; and the capacity of peripheral blood monocytes and polymorphonuclear leukocytes (PMN) to produce reactive oxygen species and to phagocytose opsonized bacteria.RESULTS: AAV patients (n = 104) showed an increase of CD10(-)CD16(low) neutrophils and total PMN in peripheral blood, suggesting a combination of increased bone marrow release and prolonged survival. An increased percentage of AAV PMN expressed CD177 but no other signs of activation were seen. A decreased production of reactive oxygen species was observed in AAV phagocytes, which was associated with disease activity. Moreover, granulocytes from patients with microscopic polyangiitis showed lower oxidative burst capacity compared to patients with granulomatosis with polyangiitis or eosinophilic granulomatosis with polyangiitis. In addition, decreased phagocytosis capacity was seen in PMN and monocytes.CONCLUSION: Our results indicate that phagocytes from AAV patients have impaired function, are easily mobilized from bone marrow but are not particularly activated. The association between low reactive oxygen species formation in PMN and disease severity is consistent with findings in other autoimmune diseases and might be considered as a risk factor
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
Antimicrobial efficiency of ethanol and 2-propanol alcohols used on contaminated storage phosphor plates and impact on durability of the plate
Sphingosine 1-phosphate receptor 2 (S1P2) attenuates reactive oxygen species formation and inhibits cell death: implications for otoprotective therapy
Cytosolic ROS production by NADPH oxidase 2 regulates muscle glucose uptake during exercise
Temporary Storage or Permanent Removal? The Division of Nitrogen between Biotic Assimilation and Denitrification in Stormwater Biofiltration Systems
SERPINA3K Plays Antioxidant Roles in Cultured Pterygial Epithelial Cells through Regulating ROS System
- …
