584 research outputs found
3D structure of individual mammalian genomes studied by single cell Hi-C
The folding of genomic DNA from the beads-on-a-string like structure of nucleosomes into higher order assemblies is critically linked to nuclear processes. We have calculated the first 3D structures of entire mammalian genomes using data from a new chromosome conformation capture procedure that allows us to first image and then process single cells. This has allowed us to study genome folding down to a scale of <100 kb and to validate the structures. We show that the structures of individual topological-associated domains and loops vary very substantially from cell-to-cell. By contrast, A/B compartments, lamin-associated domains and active enhancers/promoters are organized in a consistent way on a genome-wide basis in every cell, suggesting that they could drive chromosome and genome folding. Through studying pluripotency factor- and NuRD-regulated genes, we illustrate how single cell genome structure determination provides a novel approach for investigating biological processes.We thank the Wellcome Trust (082010/Z/07/Z), the EC FP7 4DCellFate project (277899) and the MRC (MR/M010082/1) for financial support
Proteins of generalist and specialist pathogens differ in their amino acid composition
Pathogens differ in their host specificities, with species infecting a unique host (specialist pathogens) and others having a wide host range (generalists). Molecular determinants of pathogen’s host range remain poorly understood. Secreted proteins of generalist pathogens are expected to have a broader range of intermolecular interactions (i.e., higher promiscuity) compared with their specialist counterparts. We hypothesize that this increased promiscuity of generalist secretomes may be based on an elevated content of primitive amino acids and intrinsically disordered regions, as these features are known to increase protein flexibility and interactivity. Here, we measure the proportion of primitive amino acids and percentage of intrinsically disordered residues in secreted, membrane, and cytoplasmic proteins from pathogens with different host specificity. Supporting our prediction, there is a significant general enrichment for primitive amino acids and intrinsically disordered regions in proteins from generalists compared to specialists, particularly among secreted proteins in prokaryotes. Our findings support our hypothesis that secreted proteins’ amino acid composition and disordered content influence the pathogens’ host range
Mechanisms of redundancy and specificity of the Aspergillus fumigatus Crh transglycosylases
Transglycosylases strengthen the fungal cell wall by forming a rigid network of crosslinks. Here, Fang et al. show that the five Crh transglycosylases of Aspergillus fumigatus are dispensable for cell wall integrity in vitro, and solve the crystal structure of Crh5 in complex with chitooligosaccharides
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Scalar and vector Slepian functions, spherical signal estimation and spectral analysis
It is a well-known fact that mathematical functions that are timelimited (or
spacelimited) cannot be simultaneously bandlimited (in frequency). Yet the
finite precision of measurement and computation unavoidably bandlimits our
observation and modeling scientific data, and we often only have access to, or
are only interested in, a study area that is temporally or spatially bounded.
In the geosciences we may be interested in spectrally modeling a time series
defined only on a certain interval, or we may want to characterize a specific
geographical area observed using an effectively bandlimited measurement device.
It is clear that analyzing and representing scientific data of this kind will
be facilitated if a basis of functions can be found that are "spatiospectrally"
concentrated, i.e. "localized" in both domains at the same time. Here, we give
a theoretical overview of one particular approach to this "concentration"
problem, as originally proposed for time series by Slepian and coworkers, in
the 1960s. We show how this framework leads to practical algorithms and
statistically performant methods for the analysis of signals and their power
spectra in one and two dimensions, and, particularly for applications in the
geosciences, for scalar and vectorial signals defined on the surface of a unit
sphere.Comment: Submitted to the 2nd Edition of the Handbook of Geomathematics,
edited by Willi Freeden, Zuhair M. Nashed and Thomas Sonar, and to be
published by Springer Verlag. This is a slightly modified but expanded
version of the paper arxiv:0909.5368 that appeared in the 1st Edition of the
Handbook, when it was called: Slepian functions and their use in signal
estimation and spectral analysi
Brane-World Gravity
The observable universe could be a 1+3-surface (the "brane") embedded in a
1+3+\textit{d}-dimensional spacetime (the "bulk"), with Standard Model
particles and fields trapped on the brane while gravity is free to access the
bulk. At least one of the \textit{d} extra spatial dimensions could be very
large relative to the Planck scale, which lowers the fundamental gravity scale,
possibly even down to the electroweak ( TeV) level. This revolutionary
picture arises in the framework of recent developments in M theory. The
1+10-dimensional M theory encompasses the known 1+9-dimensional superstring
theories, and is widely considered to be a promising potential route to quantum
gravity. At low energies, gravity is localized at the brane and general
relativity is recovered, but at high energies gravity "leaks" into the bulk,
behaving in a truly higher-dimensional way. This introduces significant changes
to gravitational dynamics and perturbations, with interesting and potentially
testable implications for high-energy astrophysics, black holes, and cosmology.
Brane-world models offer a phenomenological way to test some of the novel
predictions and corrections to general relativity that are implied by M theory.
This review analyzes the geometry, dynamics and perturbations of simple
brane-world models for cosmology and astrophysics, mainly focusing on warped
5-dimensional brane-worlds based on the Randall--Sundrum models. We also cover
the simplest brane-world models in which 4-dimensional gravity on the brane is
modified at \emph{low} energies -- the 5-dimensional Dvali--Gabadadze--Porrati
models. Then we discuss co-dimension two branes in 6-dimensional models.Comment: A major update of Living Reviews in Relativity 7:7 (2004)
"Brane-World Gravity", 119 pages, 28 figures, the update contains new
material on RS perturbations, including full numerical solutions of
gravitational waves and scalar perturbations, on DGP models, and also on 6D
models. A published version in Living Reviews in Relativit
Gating a single-molecule transistor with individual atoms
Transistors, regardless of their size, rely on electrical gates to control the
conductance between source and drain contacts. In atomic-scale transistors,
this conductance is sensitive to single electrons hopping via individual
orbitals1, 2. Single-electron transport in molecular transistors has been
previously studied using top-down approaches to gating, such as lithography
and break junctions1, 3, 4, 5, 6, 7, 8, 9, 10, 11. But atomically precise
control of the gate—which is crucial to transistor action at the smallest size
scales—is not possible with these approaches. Here, we used individual charged
atoms, manipulated by a scanning tunnelling microscope12, to create the
electrical gates for a single-molecule transistor. This degree of control
allowed us to tune the molecule into the regime of sequential single-electron
tunnelling, albeit with a conductance gap more than one order of magnitude
larger than observed previously8, 11, 13, 14. This unexpected behaviour arises
from the existence of two different orientational conformations of the
molecule, depending on its charge state. Our results show that strong coupling
between these charge and conformational degrees of freedom leads to new
behaviour beyond the established picture of single-electron transport in
atomic-scale transistors
Risk-taking, delay discounting, and time perspective in adolescent gamblers: an experimental study
Previous research has demonstrated that adult pathological gamblers (compared to controls) show risk-proneness, foreshortened time horizon, and preference for immediate rewards. No study has ever examined the interplay of these factors in adolescent gambling. A total of 104 adolescents took part in the research. Two equal-number groups of adolescent non-problem and problem gamblers, defined using the South Oaks Gambling Screen-Revised for Adolescents (SOGS-RA), were administered the Balloon Analogue Risk Task (BART), the Consideration of Future Consequences (CFC-14) Scale, and the Monetary Choice Questionnaire (MCQ). Adolescent problem gamblers were found to be more risk-prone, more oriented to the present, and to discount delay rewards more steeply than adolescent non-problem gamblers. Results of logistic regression analysis revealed that BART, MCQ, and CFC scores predicted gambling severity. These novel finding provides the first evidence of an association among problematic gambling, high risk-taking proneness, steep delay discounting, and foreshortened time horizon among adolescents. It may be that excessive gambling induces shortsighted behaviors that, in turn, facilitate gambling involvement
Co-located wind and wave energy farms: Uniformly distributed arrays
publisher: Elsevier articletitle: Co-located wind and wave energy farms: Uniformly distributed arrays journaltitle: Energy articlelink: http://dx.doi.org/10.1016/j.energy.2016.07.069 content_type: article copyright: © 2016 Elsevier Ltd. All rights reserved
Charged-particle distributions at low transverse momentum in √s=13 13 TeV pp interactions measured with the ATLAS detector at the LHC
Measurements of distributions of charged particles produced in proton–proton collisions with a centre-of-mass energy of 13 TeV are presented. The data were recorded by the ATLAS detector at the LHC and correspond to an integrated luminosity of 151 μb −1 μb−1 . The particles are required to have a transverse momentum greater than 100 MeV and an absolute pseudorapidity less than 2.5. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on multiplicity are measured in events containing at least two charged particles satisfying the above kinematic criteria. The results are corrected for detector effects and compared to the predictions from several Monte Carlo event generators
- …
