2,315 research outputs found
Quantizing higher-spin gravity in free-field variables
We study the formulation of massless higher-spin gravity on AdS in a
gauge in which the fundamental variables satisfy free field Poisson brackets.
This gauge choice leaves a small portion of the gauge freedom unfixed, which
should be further quotiented out. We show that doing so leads to a bulk version
of the Coulomb gas formalism for CFT's: the generators of the residual
gauge symmetries are the classical limits of screening charges, while the
gauge-invariant observables are classical charges. Quantization in these
variables can be carried out using standard techniques and makes manifest a
remnant of the triality symmetry of . This symmetry can be
used to argue that the theory should be supplemented with additional matter
content which is precisely that of the Prokushkin-Vasiliev theory. As a further
application, we use our formulation to quantize a class of conical surplus
solutions and confirm the conjecture that these are dual to specific degenerate
primaries, to all orders in the large central charge expansion.Comment: 31 pages + appendices. V2: typos corrected, reference adde
Disentangling astroglial physiology with a realistic cell model in silico
Electrically non-excitable astroglia take up neurotransmitters, buffer extracellular K+ and generate Ca2+ signals that release molecular regulators of neural circuitry. The underlying machinery remains enigmatic, mainly because the sponge-like astrocyte morphology has been difficult to access experimentally or explore theoretically. Here, we systematically incorporate multi-scale, tri-dimensional astroglial architecture into a realistic multi-compartmental cell model, which we constrain by empirical tests and integrate into the NEURON computational biophysical environment. This approach is implemented as a flexible astrocyte-model builder ASTRO. As a proof-of-concept, we explore an in silico astrocyte to evaluate basic cell physiology features inaccessible experimentally. Our simulations suggest that currents generated by glutamate transporters or K+ channels have negligible distant effects on membrane voltage and that individual astrocytes can successfully handle extracellular K+ hotspots. We show how intracellular Ca2+ buffers affect Ca2+ waves and why the classical Ca2+ sparks-and-puffs mechanism is theoretically compatible with common readouts of astroglial Ca2+ imaging
Solutions of Tikhonov functional equations and applications to multiplication operators on Szegö spaces
We consider a natural representation of solutions for Tikhonov functional equations. This will be done by applying the theory of reproducing kernels to the approximate solutions of general bounded linear operator equations (when defined from reproducing kernel Hilbert spaces into general Hilbert spaces), by using the Hilbert-Schmidt property and tensor product of Hilbert spaces. As a concrete case, we shall consider generalized fractional functions formed by the quotient of Bergman functions by Szegö functions considered from the multiplication operators on the Szegö spaces
Transport through a strongly coupled graphene quantum dot in perpendicular magnetic field
We present transport measurements on a strongly coupled graphene quantum dot
in a perpendicular magnetic field. The device consists of an etched
single-layer graphene flake with two narrow constrictions separating a 140 nm
diameter island from source and drain graphene contacts. Lateral graphene gates
are used to electrostatically tune the device. Measurements of Coulomb
resonances, including constriction resonances and Coulomb diamonds prove the
functionality of the graphene quantum dot with a charging energy of around 4.5
meV. We show the evolution of Coulomb resonances as a function of perpendicular
magnetic field, which provides indications of the formation of the graphene
specific 0th Landau level. Finally, we demonstrate that the complex pattern
superimposing the quantum dot energy spectra is due to the formation of
additional localized states with increasing magnetic field.Comment: 6 pages, 4 figure
New convolutions for quadratic-phase Fourier integral operators and their applications
We obtain new convolutions for quadratic-phase Fourier integral operators (which include, as subcases, e.g., the fractional Fourier transform and the linear canonical transform). The structure of these convolutions is based on properties of the mentioned integral operators and takes profit of weight-functions associated with some amplitude and Gaussian functions. Therefore, the fundamental properties of that quadratic-phase Fourier integral operators are also studied (including a Riemann-Lebesgue type lemma, invertibility results, a Plancherel type theorem and a Parseval type identity). As applications, we obtain new Young type inequalities, the asymptotic behaviour of some oscillatory integrals, and the solvability of convolution integral equations
Cell walls of the dimorphic fungal pathogens Sporothrix schenckii and Sporothrix brasiliensis exhibit bilaminate structures and sloughing of extensive and intact layers
This work was supported by the Fundação Carlos Chagas de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), grants E-26/202.974/2015 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), grants 229755/2013-5, Brazil. LMLB is a senior research fellow of CNPq and Faperj. NG acknowledged support from the Wellcome Trust (Trust (097377, 101873, 200208) and MRC Centre for Medical Mycology (MR/N006364/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
Increasing body mass index from age 5 to 14 years predicts asthma among adolescents: evidence from a birth cohort study
Background:Obesity and asthma are common disorders, and the prevalence of both has increased in recent decades. It has been suggested that increases in the prevalence of obesity might in part explain the increase in asthma prevalence. This study aims to examine the prospective association between change in body mass index (BMI) z-score between ages 5 and 14 years and asthma symptoms at 14 years. Methods:Data was taken from the Mater University Study of Pregnancy and its outcomes (MUSP), a birth cohort of 7223 mothers and children started in Brisbane (Australia) in 1981. BMI was measured at age 5 and 14 years. Asthma was assessed from maternal reports of symptoms at age 5 and 14 years. In this study analyses were conducted on 2911 participants who had information on BMI and asthma at both ages. Results: BMI z-score at age 14 and the change in BMI z-score from age 5 to 14–years were positively associated with asthma symptoms at age 14 years, whereas BMI z-score at age 5 was not associated with asthma at age 14. Adjustment for a range of early-life exposures did not substantially alter these findings. The association between change in BMI z-score with asthma symptoms at 14 years appeared stronger for male subjects compared with female subjects but there was no statistical evidence for a sex difference (P=0.36). Conclusions: Increase in BMI z-score between age 5 and 14 years is associated with increased risk of asthma symptoms in adolescence
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
- …
