38 research outputs found
Association between free testosterone levels and anal human papillomavirus Types 16/18 infections in a cohort of men who have sex with men
Background Human papillomavirus (HPV) types 16 and 18 cause invasive cervical cancer and most invasive anal cancers (IACs). Overall, IAC rates are highest among men who have sex with men (MSM), especially MSM with HIV infection. Testosterone is prescribed for men showing hypogonadism and HIV-related wasting. While there are direct and indirect physiological effects of testosterone in males, its role in anal HPV16/18 infections in men is unknown. Methods Free testosterone (FT) was measured in serum from 340 Multicenter AIDS Cohort Study (MACS) participants who were tested for anal HPV16/18-DNA approximately 36 months later. The effect of log10-transformed current FT level on anal HPV16/18 prevalence was modeled using Poisson regression with robust error variance. Multivariate models controlled for other HPV types, cumulative years of exogenous testosterone use, race, age, lifetime number of receptive anal intercourse partnerships, body mass index, tobacco smoking, HIV-infection and CD4+ T-cell counts among HIV-infected, and blood draw timing. Results Participants were, on average, 60 (+5.4) years of age, White (86%), and HIV-uninfected (56%); Twenty-four percent tested positive for anal HPV16 and/or 18-DNA (HPV16 prevalence= 17.1%, HPV18=9.1%). In adjusted analysis, each half-log10 increase of FT was associated with a 1.9-fold (95% Confidence Interval: 1.11, 3.24) higher HPV16/18 prevalence. Additionally, other Group 1 high-risk HPVs were associated with a 1.56-fold (1.03, 2.37) higher HPV16/18 prevalence. Traditional risk factors for HPV16/18 infection (age, tobacco smoking; lifetime number of sexual partners, including the number of receptive anal intercourse partnerships within 24 months preceding HPV testing) were poorly correlated with one another and not statistically significantly associated with higher prevalence of HPV16/ 18 infection in unadjusted and adjusted analyses. Conclusions Higher free testosterone was associated with increased HPV16/18 prevalence measured approximately three years later, independent of sexual behavior and other potential confounders. The mechanisms underlying this association remain unclear and warrant further study
Development and evaluation of an ovarian hormone profile classification tool for female athletes: step one of a two-step process to determine ovarian hormone profiles.
OBJECTIVE: This study aimed to develop a reliable, comprehensive and fit-for-purpose tool for classifying ovarian hormone profiles (OHPs) (step one of a two-step process) in postmenarcheal to perimenopausal female athletes. METHODS: The OHP classification tool was designed by a team of sport scientists, practitioners and medics and is intended for use by sport practitioners. It incorporates self-reported data and guides subsequent verification methods. Written feedback was received from practitioners currently working with elite female athletes (n=5), ensuring its applicability in an applied sport setting. In addition, inter-user (n=2) and intra-user (n=30) repeatability was assessed. RESULTS: All practitioners agreed that the online tool was user-friendly. Four (out of five) practitioners stated they would include the tool in their practice, with the fifth stating that they did not have the capacity to incorporate it in their practice at present. The OHP classification tool showed excellent test-retest reliability with Cronbach's alpha values exceeding 0.9. CONCLUSION: This tool facilitates the classification of OHPs and promotes discussions between athletes and practitioners, enhancing understanding and management of ovarian hormone health in sportswomen
The Non-Catalytic Carboxyl-Terminal Domain of ARFGAP1 Regulates Actin Cytoskeleton Reorganization by Antagonizing the Activation of Rac1
The regulation of the actin cytoskeleton and membrane trafficking is coordinated in mammalian cells. One of the regulators of membrane traffic, the small GTP-binding protein ARF1, also activates phosphatidylinositol kinases that in turn affect actin polymerization. ARFGAP1 is a GTPase activating protein (GAP) for ARF1 that is found on Golgi membranes. We present evidence that ARFGAP1 not only serves as a GAP for ARF1, but also can affect the actin cytoskeleton.As cells attach to a culture dish foci of actin appear prior to the cells flattening and spreading. We have observed that overexpression of a truncated ARFGAP1 that lacks catalytic activity for ARF, called GAP273, caused these foci to persist for much longer periods than non-transfected cells. This phenomenon was dependent on the level of GAP273 expression. Furthermore, cell spreading after re-plating or cell migration into a previously scraped area was inhibited in cells transfected with GAP273. Live cell imaging of such cells revealed that actin-rich membrane blebs formed that seldom made protrusions of actin spikes or membrane ruffles, suggesting that GAP273 interfered with the regulation of actin dynamics during cell spreading. The over-expression of constitutively active alleles of ARF6 and Rac1 suppressed the effect of GAP273 on actin. In addition, the activation of Rac1 by serum, but not that of RhoA or ARF6, was inhibited in cells over-expressing GAP273, suggesting that Rac1 is a likely downstream effector of ARFGAP1. The carboxyl terminal 65 residues of ARFGAP1 were sufficient to produce the effects on actin and cell spreading in transfected cells and co-localized with cortical actin foci.ARFGAP1 functions as an inhibitor upstream of Rac1 in regulating actin cytoskeleton. In addition to its GAP catalytic domain and Golgi binding domain, it also has an actin regulation domain in the carboxyl-terminal portion of the protein
Adenovirus Gene Transfer to Amelogenesis Imperfecta Ameloblast-Like Cells
To explore gene therapy strategies for amelogenesis imperfecta (AI), a human ameloblast-like cell population was established from third molars of an AI-affected patient. These cells were characterized by expression of cytokeratin 14, major enamel proteins and alkaline phosphatase staining. Suboptimal transduction of the ameloblast-like cells by an adenovirus type 5 (Ad5) vector was consistent with lower levels of the coxsackie-and-adenovirus receptor (CAR) on those cells relative to CAR-positive A549 cells. To overcome CAR -deficiency, we evaluated capsid-modified Ad5 vectors with various genetic capsid modifications including “pK7” and/or “RGD” motif-containing short peptides incorporated in the capsid protein fiber as well as fiber chimera with the Ad serotype 3 (Ad3) fiber “knob” domain. All fiber modifications provided an augmented transduction of AI-ameloblasts, revealed following vector dose normalization in A549 cells with a superior effect (up to 404-fold) of pK7/RGD double modification. This robust infectivity enhancement occurred through vector binding to both αvβ3/αvβ5 integrins and heparan sulfate proteoglycans (HSPGs) highly expressed by AI-ameloblasts as revealed by gene transfer blocking experiments. This work thus not only pioneers establishment of human AI ameloblast-like cell population as a model for in vitro studies but also reveals an optimal infectivity-enhancement strategy for a potential Ad5 vector-mediated gene therapy for AI
