199 research outputs found
Proteins of generalist and specialist pathogens differ in their amino acid composition
Pathogens differ in their host specificities, with species infecting a unique host (specialist pathogens) and others having a wide host range (generalists). Molecular determinants of pathogen’s host range remain poorly understood. Secreted proteins of generalist pathogens are expected to have a broader range of intermolecular interactions (i.e., higher promiscuity) compared with their specialist counterparts. We hypothesize that this increased promiscuity of generalist secretomes may be based on an elevated content of primitive amino acids and intrinsically disordered regions, as these features are known to increase protein flexibility and interactivity. Here, we measure the proportion of primitive amino acids and percentage of intrinsically disordered residues in secreted, membrane, and cytoplasmic proteins from pathogens with different host specificity. Supporting our prediction, there is a significant general enrichment for primitive amino acids and intrinsically disordered regions in proteins from generalists compared to specialists, particularly among secreted proteins in prokaryotes. Our findings support our hypothesis that secreted proteins’ amino acid composition and disordered content influence the pathogens’ host range
A rough set-based association rule approach implemented on exploring beverages product spectrum
[[abstract]]When items are classified according to whether they have more or less of a characteristic, the scale used is referred to as an ordinal scale. The main characteristic of the ordinal scale is that the categories have a logical or ordered relationship to each other. Thus, the ordinal scale data processing is very common in marketing, satisfaction and attitudinal research. This study proposes a new data mining method, using a rough set-based association rule, to analyze ordinal scale data, which has the ability to handle uncertainty in the data classification/sorting process. The induction of rough-set rules is presented as method of dealing with data uncertainty, while creating predictive if—then rules that generalize data values, for the beverage market in Taiwan. Empirical evaluation reveals that the proposed Rough Set Associational Rule (RSAR), combined with rough set theory, is superior to existing methods of data classification and can more effectively address the problems associated with ordinal scale data, for exploration of a beverage product spectrum.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子
Gating a single-molecule transistor with individual atoms
Transistors, regardless of their size, rely on electrical gates to control the
conductance between source and drain contacts. In atomic-scale transistors,
this conductance is sensitive to single electrons hopping via individual
orbitals1, 2. Single-electron transport in molecular transistors has been
previously studied using top-down approaches to gating, such as lithography
and break junctions1, 3, 4, 5, 6, 7, 8, 9, 10, 11. But atomically precise
control of the gate—which is crucial to transistor action at the smallest size
scales—is not possible with these approaches. Here, we used individual charged
atoms, manipulated by a scanning tunnelling microscope12, to create the
electrical gates for a single-molecule transistor. This degree of control
allowed us to tune the molecule into the regime of sequential single-electron
tunnelling, albeit with a conductance gap more than one order of magnitude
larger than observed previously8, 11, 13, 14. This unexpected behaviour arises
from the existence of two different orientational conformations of the
molecule, depending on its charge state. Our results show that strong coupling
between these charge and conformational degrees of freedom leads to new
behaviour beyond the established picture of single-electron transport in
atomic-scale transistors
Arterial Tortuosity: An Imaging Biomarker of Childhood Stroke Pathogenesis?
Background and purposeArteriopathy is the leading cause of childhood arterial ischemic stroke. Mechanisms are poorly understood but may include inherent abnormalities of arterial structure. Extracranial dissection is associated with connective tissue disorders in adult stroke. Focal cerebral arteriopathy is a common syndrome where pathophysiology is unknown but may include intracranial dissection or transient cerebral arteriopathy. We aimed to quantify cerebral arterial tortuosity in childhood arterial ischemic stroke, hypothesizing increased tortuosity in dissection.MethodsChildren (1 month to 18 years) with arterial ischemic stroke were recruited within the Vascular Effects of Infection in Pediatric Stroke (VIPS) study with controls from the Calgary Pediatric Stroke Program. Objective, multi-investigator review defined diagnostic categories. A validated imaging software method calculated the mean arterial tortuosity of the major cerebral arteries using 3-dimensional time-of-flight magnetic resonance angiographic source images. Tortuosity of unaffected vessels was compared between children with dissection, transient cerebral arteriopathy, meningitis, moyamoya, cardioembolic strokes, and controls (ANOVA and post hoc Tukey). Trauma-related versus spontaneous dissection was compared (Student t test).ResultsOne hundred fifteen children were studied (median, 6.8 years; 43% women). Age and sex were similar across groups. Tortuosity means and variances were consistent with validation studies. Tortuosity in controls (1.346±0.074; n=15) was comparable with moyamoya (1.324±0.038; n=15; P=0.998), meningitis (1.348±0.052; n=11; P=0.989), and cardioembolic (1.379±0.056; n=27; P=0.190) cases. Tortuosity was higher in both extracranial dissection (1.404±0.084; n=22; P=0.021) and transient cerebral arteriopathy (1.390±0.040; n=27; P=0.001) children. Tortuosity was not different between traumatic versus spontaneous dissections (P=0.70).ConclusionsIn children with dissection and transient cerebral arteriopathy, cerebral arteries demonstrate increased tortuosity. Quantified arterial tortuosity may represent a clinically relevant imaging biomarker of vascular biology in pediatric stroke
Resolving the neural circuits of anxiety
Although anxiety disorders represent a major societal problem demanding new therapeutic targets, these efforts have languished in the absence of a mechanistic understanding of this subjective emotional state. While it is impossible to know with certainty the subjective experience of a rodent, rodent models hold promise in dissecting well-conserved limbic circuits. The application of modern approaches in neuroscience has already begun to unmask the neural circuit intricacies underlying anxiety by allowing direct examination of hypotheses drawn from existing psychological concepts. This information points toward an updated conceptual model for what neural circuit perturbations could give rise to pathological anxiety and thereby provides a roadmap for future therapeutic development.National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (NIH Director’s New Innovator Award DP2-DK-102256-01)National Institute of Mental Health (U.S.) (NIH) R01-MH102441-01)JPB Foundatio
Chromosome studies in Orchidaceae from Argentina
The center of diversity of Argentinean orchids is in the northeast region of the country. Chromosome numbers and karyotype features of 43 species belonging to 28 genera are presented here. Five chromosome records are the first ones at the genus level; these taxa are Aspidogyne kuckzinskii (2n = 42), Eurystyles actinosophila (2n = 56), Skeptrostachys paraguayensis (2n = 46), Stigmatosema polyaden (2n = 40) and Zygostates alleniana (2n = 54). In addition, a chromosome number is presented for the first time for 15 species: Corymborkis flava (2n = 56), Cyclopogon callophyllus (2n = 28), C. oliganthus (2n = 64), Cyrtopodium hatschbachii (2n = 46), C. palmifrons (2n = 46), Galeandra beyrichii (2n = 54), Habenaria bractescens (2n = 44), Oncidium edwallii (2n = 42), O. fimbriatum (2n = 56), O. pubes (2n = 84), O. riograndense (2n = 56), Pelexia ekmanii (2n = 46), P. lindmanii (2n = 46) and Warrea warreana (2n = 48). For Oncidium longicornu (2n = 42), O. divaricatum (2n = 56) and Sarcoglottis fasciculata (2n = 46+1B?, 46+3B?), a new cytotype was found. Chromosome data support phylogenetic relationships proposed by previous cytological, morphologic and molecular analyses, and in all the cases cover some gaps in the South American literature on orchid chromosomes
Оценка качества образования на основе компетентностного подхода
В работе представлен практический опыт оценки качества образования в новом формате компетентностного подход
Cytogenetic and cytometric analyses in artificial intercytotypic hybrids of the emergent orchid model species Erycina pusilla
Cultural adaptation and validation of an instrument on barriers for the use of research results
ABSTRACT Objective: to culturally adapt The Barriers to Research Utilization Scale and to analyze the metric validity and reliability properties of its Brazilian Portuguese version. Method: methodological research conducted by means of the cultural adaptation process (translation and back-translation), face and content validity, construct validity (dimensionality and known groups) and reliability analysis (internal consistency and test-retest). The sample consisted of 335 nurses, of whom 43 participated in the retest phase. Results: the validity of the adapted version of the instrument was confirmed. The scale investigates the barriers for the use of the research results in clinical practice. Confirmatory factorial analysis demonstrated that the Brazilian Portuguese version of the instrument is adequately adjusted to the dimensional structure the scale authors originally proposed. Statistically significant differences were observed among the nurses holding a Master's or Doctoral degree, with characteristics favorable to Evidence-Based Practice, and working at an institution with an organizational cultural that targets this approach. The reliability showed a strong correlation (r ranging between 0.77 and 0.84, p<0.001) and the internal consistency was adequate (Cronbach's alpha ranging between 0.77 and 0.82). Conclusion: the Brazilian Portuguese version of The Barriers Scale was valid and reliable in the group studied
Franck-Condon blockade in suspended carbon nanotube quantum dots
Understanding the influence of vibrational motion of the atoms on electronic
transitions in molecules constitutes a cornerstone of quantum physics, as
epitomized by the Franck-Condon principle of spectroscopy. Recent advances in
building molecular-electronics devices and nanoelectromechanical systems open a
new arena for studying the interaction between mechanical and electronic
degrees of freedom in transport at the single-molecule level. The tunneling of
electrons through molecules or suspended quantum dots has been shown to excite
vibrational modes, or vibrons. Beyond this effect, theory predicts that strong
electron-vibron coupling dramatically suppresses the current flow at low
biases, a collective behaviour known as Franck-Condon blockade. Here we show
measurements on quantum dots formed in suspended single-wall carbon nanotubes
revealing a remarkably large electron-vibron coupling and, due to the high
quality and unprecedented tunability of our samples, admit a quantitative
analysis of vibron-mediated electronic transport in the regime of strong
electron-vibron coupling. This allows us to unambiguously demonstrate the
Franck-Condon blockade in a suspended nanostructure. The large observed
electron-vibron coupling could ultimately be a key ingredient for the detection
of quantized mechanical motion. It also emphasizes the unique potential for
nanoelectromechanical device applications based on suspended graphene sheets
and carbon nanotubes.Comment: 7 pages, 3 figure
- …
