625 research outputs found

    Electrically driven single electron spin resonance in a slanting Zeeman field

    Full text link
    The rapidly rising fields of spintronics and quantum information science have led to a strong interest in developing the ability to coherently manipulate electron spins. Electron spin resonance (ESR) is a powerful technique to manipulate spins that is commonly achieved by applying an oscillating magnetic field. However, the technique has proven very challenging when addressing individual spins. In contrast, by mixing the spin and charge degrees of freedom in a controlled way through engineered non-uniform magnetic fields, electron spin can be manipulated electrically without the need of high-frequency magnetic fields. Here we realize electrically-driven addressable spin rotations on two individual electrons by integrating a micron-size ferromagnet to a double quantum dot device. We find that the electrical control and spin selectivity is enabled by the micro-magnet's stray magnetic field which can be tailored to multi-dots architecture. Our results demonstrate the feasibility of manipulating electron spins electrically in a scalable way.Comment: 25 pages, 6 figure

    Democracy, protest and public sphere in Russia after the 2011–2012 anti-government protests: digital media at stake

    Get PDF
    The 2011–2012 Russian protest mobilisations were largely enabled by the rise of social networks. Social and technological advancements paired to pave the way for the ‘biggest protests since the fall of USSR’. Ubiquitous and uncensored social media facilitated the networking and mobilisation for this protest activity: Liberal masses were able to share and discuss their grievances, unite and coordinate online for the offline protest. The digitally savvy protest public developed to confront the government, which appeared to be astonished by the scale of protest. Those mobilisations marked an important gap between the government’s conception of the society and the real state of resistance. This article studies three main hypotheses regarding the potential of the protest movement in Russia. The hypotheses were drawn from recent sociological, political and media studies on Russian resistance. Current research aims to contribute to the debate from the digital media perspective. It therefore evaluates three main assumptions: Digital media have the potential to empower, dependent upon the relevant political, social and economic factors; digital media isolates protest publics and therefore may be more useful for the government than the resistance; and recent censorship of digital media communication signals a tightening of both formal and informal restrictions against opposition and protest politics. This article uses theoretical and factual evidence on the limitations of democracy and the public sphere and conceptualises the government’s management of resistance in Russia during and after the 2011–2012 protests. It studies how the hybrid political regime in Russia balances restrictions on freedom of speech with strengthened state propaganda and how it mediates media oppression and invites self-censorship. Finally, it examines how the state communication watchdog has recently focused its attention at the digital realm. This move confirms the importance of the online protest communication for the Russian political environment. Yet the state’s acknowledgement of digital political resistance may lead to further oppression and curbing of this emerging component of Russian politics

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of s=7  TeV \sqrt{s}=7\;\mathrm{TeV} proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan β < 40

    Exploring new physics frontiers through numerical relativity

    Get PDF
    The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology

    Transfer von festen, flüssigen und gasförmigen Stoffen aus Vulkanen in die Atmosphäre

    Get PDF
    Die häufigsten vulkanischen Volatilen sind H2O, CO2, SO3 und Halogene. Zusammensetzung, Menge und Injektionsraten von vulkanischen Gasen und Partikeln in die Troposphäre und Stratosphäre hängen ab von der chemischen Zusammensetzung eines Magmas, dem plattentektonischen Milieu sowie Eruptionsmechanismen und Eruptionsraten. Über 90% der eruptierten Magmen sind basaltischer Zusammensetzung mit niedriger Viskosität, relativ geringen Volatilengehalten und meist niedrigen Eruptionsraten sowie wenig explosiven Eruptionen überwiegend entlang der mittelozeanischen Rücken in großen Wassertiefen. Magmen in Inselbögen und Subduktionszonen an Kontinenträndern sind H2O-reich, in anderen plattentektonischen Milieus überwiegt in basaltischen Magmen CO2. In mafischen Magmen ist CO2 schlecht löslich und kann daher schon mehrere Kilometer unter der Erdoberfläche als Gasphase aus einem Magma entweichen. Felsische (hochdifferenzierte) Magmen, H2O-reich und CO2-arm, eruptieren oft hochexplosiv, insbesondere an Subduktionszonen, und mit hohen Eruptionsraten, z.B. El Chichón (Mexiko, 1982) und Pinatubo (Philippinen, 1991). Ihre Eruptionssäulen (Gas-/Partikelgemische) können bis ca. 40 km Höhe erreichen und sind Hauptlieferant der in die Stratosphäre injizierten Gasmengen

    Influence of eruptive style on volcanic gas emission chemistry and temperature

    Get PDF
    Gas bubbles form as magmas ascend in the crust and exsolve volatiles. These bubbles evolve chemically and physically as magma decompression and crystallization proceed. It is generally assumed that the gas remains in thermal equilibrium with the melt but the relationship between gas and melt redox state is debated. Here, using absorption spectroscopy, we report the composition of gases emitted from the lava lake of Kīlauea Volcano, Hawaii, and calculate equilibrium conditions for the gas emissions. Our observations span a transition between more and less vigorous-degassing regimes. They reveal a temperature range of up to 250 °C, and progressive oxidation of the gas, relative to solid rock buffers, with decreasing gas temperature. We suggest that these phenomena are the result of changing gas bubble size. We find that even for more viscous magmas, fast-rising bubbles can cool adiabatically, and lose the redox signature of their associated melts. This process can result in rapid changes in the abundances of redox-sensitive gas species. Gas composition is monitored at many volcanoes in support of hazard assessment but time averaging of observations can mask such variability arising from the dynamics of degassing. In addition, the observed redox decoupling between gas and melt calls for caution in using lava chemistry to infer the composition of associated volcanic gases

    Pulsations in main sequence OBAF-type stars

    Get PDF
    CONTEXT: The third Gaia data release provides photometric time series covering 34 months for about 10 million stars. For many of those stars, a characterisation in Fourier space and their variability classification are also provided. This paper focuses on intermediate- to high-mass (IHM) main sequence pulsators (M ≥  1.3 M⊙) of spectral types O, B, A, or F, known as β Cep, slowly pulsating B (SPB), δ Sct, and γ Dor stars. These stars are often multi-periodic and display low amplitudes, making them challenging targets to analyse with sparse time series. AIMS: We investigate the extent to which the sparse Gaia DR3 data can be used to detect OBAF-type pulsators and discriminate them from other types of variables. We aim to probe the empirical instability strips and compare them with theoretical predictions. The most populated variability class is that of the δ Sct variables. For these stars, we aim to confirm their empirical period-luminosity (PL) relation, and verify the relation between their oscillation amplitude and rotation. METHODS: All datasets used in this analysis are part of the Gaia DR3 data release. The photometric time series were used to perform a Fourier analysis, while the global astrophysical parameters necessary for the empirical instability strips were taken from the Gaia DR3 gspphot tables, and the v sin i data were taken from the Gaia DR3 esphs tables. The δ Sct PL relation was derived using the same photometric parallax method as the one recently used to establish the PL relation for classical Cepheids using Gaia data. RESULTS: We show that for nearby OBAF-type pulsators, the Gaia DR3 data are precise and accurate enough to pinpoint them in the Hertzsprung-Russell (HR) diagram. We find empirical instability strips covering broader regions than theoretically predicted. In particular, our study reveals the presence of fast rotating gravity-mode pulsators outside the strips, as well as the co-existence of rotationally modulated variables inside the strips as reported before in the literature. We derive an extensive period–luminosity relation for δ Sct stars and provide evidence that the relation features different regimes depending on the oscillation period. We demonstrate how stellar rotation attenuates the amplitude of the dominant oscillation mode of δ Sct stars. CONCLUSIONS: The Gaia DR3 time-series photometry already allows for the detection of the dominant (non-)radial oscillation mode in about 100 000 intermediate- and high-mass dwarfs across the entire sky. This detection capability will increase as the time series becomes longer, allowing the additional delivery of frequencies and amplitudes of secondary pulsation modes
    corecore