526 research outputs found
Dynamics and transport near quantum-critical points
The physics of non-zero temperature dynamics and transport near
quantum-critical points is discussed by a detailed study of the O(N)-symmetric,
relativistic, quantum field theory of a N-component scalar field in spatial
dimensions. A great deal of insight is gained from a simple, exact solution of
the long-time dynamics for the N=1 d=1 case: this model describes the critical
point of the Ising chain in a transverse field, and the dynamics in all the
distinct, limiting, physical regions of its finite temperature phase diagram is
obtained. The N=3, d=1 model describes insulating, gapped, spin chain
compounds: the exact, low temperature value of the spin diffusivity is
computed, and compared with NMR experiments. The N=3, d=2,3 models describe
Heisenberg antiferromagnets with collinear N\'{e}el correlations, and
experimental realizations of quantum-critical behavior in these systems are
discussed. Finally, the N=2, d=2 model describes the superfluid-insulator
transition in lattice boson systems: the frequency and temperature dependence
of the the conductivity at the quantum-critical coupling is described and
implications for experiments in two-dimensional thin films and inversion layers
are noted.Comment: Lectures presented at the NATO Advanced Study Institute on "Dynamical
properties of unconventional magnetic systems", Geilo, Norway, April 2-12,
1997, edited by A. Skjeltorp and D. Sherrington, Kluwer Academic, to be
published. 46 page
The porin and the permeating antibiotic: A selective diffusion barrier in gram-negative bacteria
Gram-negative bacteria are responsible for a large proportion of antibiotic resistant bacterial diseases. These bacteria have a complex cell envelope that comprises an outer membrane and an inner membrane that delimit the periplasm. The outer membrane contains various protein channels, called porins, which are involved in the influx of various compounds, including several classes of antibiotics. Bacterial adaptation to reduce influx through porins is an increasing problem worldwide that contributes, together with efflux systems, to the emergence and dissemination of antibiotic resistance. An exciting challenge is to decipher the genetic and molecular basis of membrane impermeability as a bacterial resistance mechanism. This Review outlines the bacterial response towards antibiotic stress on altered membrane permeability and discusses recent advances in molecular approaches that are improving our knowledge of the physico-chemical parameters that govern the translocation of antibiotics through porin channel
Probing the internal micromechanical properties of Pseudomonas aeruginosa biofilms by Brillouin imaging
© 2017 The Author(s). Biofilms are organised aggregates of bacteria that adhere to each other or surfaces. The matrix of extracellular polymeric substances that holds the cells together provides the mechanical stability of the biofilm. In this study, we have applied Brillouin microscopy, a technique that is capable of measuring mechanical properties of specimens on a micrometre scale based on the shift in frequency of light incident upon a sample due to thermal fluctuations, to investigate the micromechanical properties of an active, live Pseudomonas aeruginosa biofilm. Using this non-contact and label-free technique, we have extracted information about the internal stiffness of biofilms under continuous flow. No correlation with colony size was found when comparing the averages of Brillouin shifts of two-dimensional cross-sections of randomly selected colonies. However, when focusing on single colonies, we observed two distinct spatial patterns: In smaller colonies, stiffness increased towards their interior, indicating a more compact structure of the centre of the colony, whereas, larger (over 45 μm) colonies were found to have less stiff interiors
Bootstrapping the energy flow in the beginning of life.
This paper suggests that the energy flow on which all living structures depend only started up slowly, the low-energy, initial phase starting up a second, slightly more energetic phase, and so on. In this way, the build up of the energy flow follows a bootstrapping process similar to that found in the development of computers, the first generation making possible the calculations necessary for constructing the second one, etc. In the biogenetic upstart of an energy flow, non-metals in the lower periods of the Periodic Table of Elements would have constituted the most primitive systems, their operation being enhanced and later supplanted by elements in the higher periods that demand more energy. This bootstrapping process would put the development of the metabolisms based on the second period elements carbon, nitrogen and oxygen at the end of the evolutionary process rather than at, or even before, the biogenetic even
Defining functional diversity for lignocellulose degradation in a microbial community using multi-omics studies
Abstract\ud
\ud
Background\ud
Lignocellulose is one of the most abundant forms of fixed carbon in the biosphere. Current industrial approaches to the degradation of lignocellulose employ enzyme mixtures, usually from a single fungal species, which are only effective in hydrolyzing polysaccharides following biomass pre-treatments. While the enzymatic mechanisms of lignocellulose degradation have been characterized in detail in individual microbial species, the microbial communities that efficiently breakdown plant materials in nature are species rich and secrete a myriad of enzymes to perform “community-level” metabolism of lignocellulose. Single-species approaches are, therefore, likely to miss important aspects of lignocellulose degradation that will be central to optimizing commercial processes.\ud
\ud
\ud
Results\ud
Here, we investigated the microbial degradation of wheat straw in liquid cultures that had been inoculated with wheat straw compost. Samples taken at selected time points were subjected to multi-omics analysis with the aim of identifying new microbial mechanisms for lignocellulose degradation that could be applied in industrial pre-treatment of feedstocks. Phylogenetic composition of the community, based on sequenced bacterial and eukaryotic ribosomal genes, showed a gradual decrease in complexity and diversity over time due to microbial enrichment. Taxonomic affiliation of bacterial species showed dominance of Bacteroidetes and Proteobacteria and high relative abundance of genera Asticcacaulis, Leadbetterella and Truepera. The eukaryotic members of the community were enriched in peritrich ciliates from genus Telotrochidium that thrived in the liquid cultures compared to fungal species that were present in low abundance. A targeted metasecretome approach combined with metatranscriptomics analysis, identified 1127 proteins and showed the presence of numerous carbohydrate-active enzymes extracted from the biomass-bound fractions and from the culture supernatant. This revealed a wide array of hydrolytic cellulases, hemicellulases and carbohydrate-binding modules involved in lignocellulose degradation. The expression of these activities correlated to the changes in the biomass composition observed by FTIR and ssNMR measurements.\ud
\ud
\ud
Conclusions\ud
A combination of mass spectrometry-based proteomics coupled with metatranscriptomics has enabled the identification of a large number of lignocellulose degrading enzymes that can now be further explored for the development of improved enzyme cocktails for the treatment of plant-based feedstocks. In addition to the expected carbohydrate-active enzymes, our studies reveal a large number of unknown proteins, some of which may play a crucial role in community-based lignocellulose degradation.This work was funded by Biotechnology and Biological Sciences Research\ud
Council (BBSRC) Grants BB/1018492/1, BB/K020358/1 and BB/P027717/1, the\ud
BBSRC Network in Biotechnology and Bioenergy BIOCATNET and São Paulo\ud
Research Foundation (FAPESP) Grant 10/52362-5. ERdA thanks EMBRAPA\ud
Instrumentation São Carlos and Dr. Luiz Alberto Colnago for providing the\ud
NMR facility and CNPq Grant 312852/2014-2. The authors would like to thank\ud
Deborah Rathbone and Susan Heywood from the Biorenewables Develop‑\ud
ment Centre for technical assistance in rRNA amplicon sequencing
ProFITS of maize: a database of protein families involved in the transduction of signalling in the maize genome
<p>Abstract</p> <p>Background</p> <p>Maize (<it>Zea mays </it>ssp. <it>mays </it>L.) is an important model for plant basic and applied research. In 2009, the B73 maize genome sequencing made a great step forward, using clone by clone strategy; however, functional annotation and gene classification of the maize genome are still limited. Thus, a well-annotated datasets and informative database will be important for further research discoveries. Signal transduction is a fundamental biological process in living cells, and many protein families participate in this process in sensing, amplifying and responding to various extracellular or internal stimuli. Therefore, it is a good starting point to integrate information on the maize functional genes involved in signal transduction.</p> <p>Results</p> <p>Here we introduce a comprehensive database 'ProFITS' (Protein Families Involved in the Transduction of Signalling), which endeavours to identify and classify protein kinases/phosphatases, transcription factors and ubiquitin-proteasome-system related genes in the B73 maize genome. Users can explore gene models, corresponding transcripts and FLcDNAs using the three abovementioned protein hierarchical categories, and visualize them using an AJAX-based genome browser (JBrowse) or Generic Genome Browser (GBrowse). Functional annotations such as GO annotation, protein signatures, protein best-hits in the <it>Arabidopsis </it>and rice genome are provided. In addition, pre-calculated transcription factor binding sites of each gene are generated and mutant information is incorporated into ProFITS. In short, ProFITS provides a user-friendly web interface for studies in signal transduction process in maize.</p> <p>Conclusion</p> <p>ProFITS, which utilizes both the B73 maize genome and full length cDNA (FLcDNA) datasets, provides users a comprehensive platform of maize annotation with specific focus on the categorization of families involved in the signal transduction process. ProFITS is designed as a user-friendly web interface and it is valuable for experimental researchers. It is freely available now to all users at <url>http://bioinfo.cau.edu.cn/ProFITS</url>.</p
Expression pattern of circadian genes and steroidogenesis-related genes after testosterone stimulation in the human ovary
The Initial-Final Mass Relation among White Dwarfs in Wide Binaries
We present the initial-final mass relation derived from 10 white dwarfs in
wide binaries that consist of a main sequence star and a white dwarf. The
temperature and gravity of each white dwarf was measured by fitting theoretical
model atmospheres to the observed spectrum using a fitting
algorithm. The cooling time and mass was obtained using theoretical cooling
tracks. The total age of each binary was estimated from the chromospheric
activity of its main sequence component to an uncertainty of about 0.17 dex in
log \textit{t} The difference between the total age and white dwarf cooling
time is taken as the main sequence lifetime of each white dwarf. The initial
mass of each white dwarf was then determined using stellar evolution tracks
with a corresponding metallicity derived from spectra of their main sequence
companions, thus yielding the initial-final mass relation. Most of the initial
masses of the white dwarf components are between 1 - 2 M. Our results
suggest a correlation between the metallicity of a white dwarf's progenitor and
the amount of post-main-sequence mass loss it experiences - at least among
progenitors with masses in the range of 1 - 2 M. A comparison of our
observations to theoretical models suggests that low mass stars preferentially
lose mass on the red giant branch.Comment: 28 pages, 8 figures, accepted for publication in Ap
Adolescent and adult first time mothers' health seeking practices during pregnancy and early motherhood in Wakiso district, central Uganda
<p>Abstract</p> <p>Background</p> <p>Maternal health services have a potentially critical role in the improvement of reproductive health. In order to get a better understanding of adolescent mothers'needs we compared health seeking practices of first time adolescent and adult mothers during pregnancy and early motherhood in Wakiso district, Uganda.</p> <p>Methods</p> <p>This was a cross-sectional study conducted between May and August, 2007 in Wakiso district. A total of 762 women (442 adolescents and 320 adult) were interviewed using a structured questionnaire. We calculated odds ratios with their 95% CI for antenatal and postnatal health care seeking, stigmatisation and violence experienced from parents comparing adolescents to adult first time mothers. STATA V.8 was used for data analysis.</p> <p>Results</p> <p>Adolescent mothers were significantly more disadvantaged in terms of health care seeking for reproductive health services and faced more challenges during pregnancy and early motherhood compared to adult mothers. Adolescent mothers were more likely to have dropped out of school due to pregnancy (OR = 3.61, 95% CI: 2.40–5.44), less likely to earn a salary (OR = 0.43, 95%CI: 0.24–0.76), and more likely to attend antenatal care visits less than four times compared to adult mothers (OR = 1.52, 95%CI: 1.12–2.07). Adolescents were also more likely to experience violence from parents (OR = 2.07, 95%CI: 1.39–3.08) and to be stigmatized by the community (CI = 1.58, 95%CI: 1.09–2.59). In early motherhood, adolescent mothers were less likely to seek for second and third vaccine doses for their infants [Polio2 (OR = 0.73, 95% CI: 0.55–0.98), Polio3 (OR = 0.70: 95% CI: 0.51–0.95), DPT2 (OR = 0.71, 95% CI: 0.53–0.96), DPT3 (OR = 0.68, 95% CI: 0.50–0.92)] compared to adult mothers. These results are compelling and call for urgent adolescent focused interventions.</p> <p>Conclusion</p> <p>Adolescents showed poorer health care seeking behaviour for themselves and their children, and experienced increased community stigmatization and violence, suggesting bigger challenges to the adolescent mothers in terms of social support. Adolescent friendly interventions such as pregnancy groups targeting to empower pregnant adolescents providing information on pregnancy, delivery and early childhood care need to be introduced and implemented.</p
Non-Coding RNA Prediction and Verification in Saccharomyces cerevisiae
Non-coding RNA (ncRNA) play an important and varied role in cellular function. A significant amount of research has been devoted to computational prediction of these genes from genomic sequence, but the ability to do so has remained elusive due to a lack of apparent genomic features. In this work, thermodynamic stability of ncRNA structural elements, as summarized in a Z-score, is used to predict ncRNA in the yeast Saccharomyces cerevisiae. This analysis was coupled with comparative genomics to search for ncRNA genes on chromosome six of S. cerevisiae and S. bayanus. Sets of positive and negative control genes were evaluated to determine the efficacy of thermodynamic stability for discriminating ncRNA from background sequence. The effect of window sizes and step sizes on the sensitivity of ncRNA identification was also explored. Non-coding RNA gene candidates, common to both S. cerevisiae and S. bayanus, were verified using northern blot analysis, rapid amplification of cDNA ends (RACE), and publicly available cDNA library data. Four ncRNA transcripts are well supported by experimental data (RUF10, RUF11, RUF12, RUF13), while one additional putative ncRNA transcript is well supported but the data are not entirely conclusive. Six candidates appear to be structural elements in 5′ or 3′ untranslated regions of annotated protein-coding genes. This work shows that thermodynamic stability, coupled with comparative genomics, can be used to predict ncRNA with significant structural elements
- …
