3,618 research outputs found
Biological measurement beyond the quantum limit
Quantum noise places a fundamental limit on the per photon sensitivity
attainable in optical measurements. This limit is of particular importance in
biological measurements, where the optical power must be constrained to avoid
damage to the specimen. By using non-classically correlated light, we
demonstrated that the quantum limit can be surpassed in biological
measurements. Quantum enhanced microrheology was performed within yeast cells
by tracking naturally occurring lipid granules with sensitivity 2.4 dB beyond
the quantum noise limit. The viscoelastic properties of the cytoplasm could
thereby be determined with a 64% improved measurement rate. This demonstration
paves the way to apply quantum resources broadly in a biological context
Composite-pulse magnetometry with a solid-state quantum sensor
The sensitivity of quantum magnetometers is challenged by control errors and,
especially in the solid-state, by their short coherence times. Refocusing
techniques can overcome these limitations and improve the sensitivity to
periodic fields, but they come at the cost of reduced bandwidth and cannot be
applied to sense static (DC) or aperiodic fields. Here we experimentally
demonstrate that continuous driving of the sensor spin by a composite pulse
known as rotary-echo (RE) yields a flexible magnetometry scheme, mitigating
both driving power imperfections and decoherence. A suitable choice of RE
parameters compensates for different scenarios of noise strength and origin.
The method can be applied to nanoscale sensing in variable environments or to
realize noise spectroscopy. In a room-temperature implementation based on a
single electronic spin in diamond, composite-pulse magnetometry provides a
tunable trade-off between sensitivities in the microT/sqrt(Hz) range,
comparable to those obtained with Ramsey spectroscopy, and coherence times
approaching T1
A robust, scanning quantum system for nanoscale sensing and imaging
Controllable atomic-scale quantum systems hold great potential as sensitive
tools for nanoscale imaging and metrology. Possible applications range from
nanoscale electric and magnetic field sensing to single photon microscopy,
quantum information processing, and bioimaging. At the heart of such schemes is
the ability to scan and accurately position a robust sensor within a few
nanometers of a sample of interest, while preserving the sensor's quantum
coherence and readout fidelity. These combined requirements remain a challenge
for all existing approaches that rely on direct grafting of individual solid
state quantum systems or single molecules onto scanning-probe tips. Here, we
demonstrate the fabrication and room temperature operation of a robust and
isolated atomic-scale quantum sensor for scanning probe microscopy.
Specifically, we employ a high-purity, single-crystalline diamond nanopillar
probe containing a single Nitrogen-Vacancy (NV) color center. We illustrate the
versatility and performance of our scanning NV sensor by conducting
quantitative nanoscale magnetic field imaging and near-field single-photon
fluorescence quenching microscopy. In both cases, we obtain imaging resolution
in the range of 20 nm and sensitivity unprecedented in scanning quantum probe
microscopy
Transport Through Andreev Bound States in a Graphene Quantum Dot
Andreev reflection-where an electron in a normal metal backscatters off a
superconductor into a hole-forms the basis of low energy transport through
superconducting junctions. Andreev reflection in confined regions gives rise to
discrete Andreev bound states (ABS), which can carry a supercurrent and have
recently been proposed as the basis of qubits [1-3]. Although signatures of
Andreev reflection and bound states in conductance have been widely reported
[4], it has been difficult to directly probe individual ABS. Here, we report
transport measurements of sharp, gate-tunable ABS formed in a
superconductor-quantum dot (QD)-normal system, which incorporates graphene. The
QD exists in the graphene under the superconducting contact, due to a
work-function mismatch [5, 6]. The ABS form when the discrete QD levels are
proximity coupled to the superconducting contact. Due to the low density of
states of graphene and the sensitivity of the QD levels to an applied gate
voltage, the ABS spectra are narrow, can be tuned to zero energy via gate
voltage, and show a striking pattern in transport measurements.Comment: 25 Pages, included SO
Optical Lattices: Theory
This chapter presents an overview of the properties of a Bose-Einstein
condensate (BEC) trapped in a periodic potential. This system has attracted a
wide interest in the last years, and a few excellent reviews of the field have
already appeared in the literature (see, for instance, [1-3] and references
therein). For this reason, and because of the huge amount of published results,
we do not pretend here to be comprehensive, but we will be content to provide a
flavor of the richness of this subject, together with some useful references.
On the other hand, there are good reasons for our effort. Probably, the most
significant is that BEC in periodic potentials is a truly interdisciplinary
problem, with obvious connections with electrons in crystal lattices, polarons
and photons in optical fibers. Moreover, the BEC experimentalists have reached
such a high level of accuracy to create in the lab, so to speak, paradigmatic
Hamiltonians, which were first introduced as idealized theoretical models to
study, among others, dynamical instabilities or quantum phase transitions.Comment: Chapter 13 in Part VIII: "Optical Lattices" of "Emergent Nonlinear
Phenomena in Bose-Einstein Condensates: Theory and Experiment," edited by P.
G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer
Series on Atomic, Optical, and Plasma Physics, 2007) - pages 247-26
An optimized TOPS+ comparison method for enhanced TOPS models
This article has been made available through the Brunel Open Access Publishing Fund.Background
Although methods based on highly abstract descriptions of protein structures, such as VAST and TOPS, can perform very fast protein structure comparison, the results can lack a high degree of biological significance. Previously we have discussed the basic mechanisms of our novel method for structure comparison based on our TOPS+ model (Topological descriptions of Protein Structures Enhanced with Ligand Information). In this paper we show how these results can be significantly improved using parameter optimization, and we call the resulting optimised TOPS+ method as advanced TOPS+ comparison method i.e. advTOPS+.
Results
We have developed a TOPS+ string model as an improvement to the TOPS [1-3] graph model by considering loops as secondary structure elements (SSEs) in addition to helices and strands, representing ligands as first class objects, and describing interactions between SSEs, and SSEs and ligands, by incoming and outgoing arcs, annotating SSEs with the interaction direction and type. Benchmarking results of an all-against-all pairwise comparison using a large dataset of 2,620 non-redundant structures from the PDB40 dataset [4] demonstrate the biological significance, in terms of SCOP classification at the superfamily level, of our TOPS+ comparison method.
Conclusions
Our advanced TOPS+ comparison shows better performance on the PDB40 dataset [4] compared to our basic TOPS+ method, giving 90 percent accuracy for SCOP alpha+beta; a 6 percent increase in accuracy compared to the TOPS and basic TOPS+ methods. It also outperforms the TOPS, basic TOPS+ and SSAP comparison methods on the Chew-Kedem dataset [5], achieving 98 percent accuracy. Software Availability: The TOPS+ comparison server is available at http://balabio.dcs.gla.ac.uk/mallika/WebTOPS/.This article is available through the Brunel Open Access Publishing Fun
COP21 climate negotiators' responses to climate model forecasts
Policymakers involved in climate change negotiations are key users of climate science. It is therefore vital to understand how to communicate scientific information most effectively to this group. We tested how a unique sample of policymakers and negotiators at the Paris COP21 conference update their beliefs on year 2100 global mean temperature increases in response to a statistical summary of climate models' forecasts. We randomized the way information was provided across participants using three different formats similar to those used in Intergovernmental Panel on Climate Change reports. In spite of having received all available relevant scientific information, policymakers adopted such information very conservatively, assigning it less weight than their own prior beliefs. However, providing individual model estimates in addition to the statistical range was more effective in mitigating such inertia. The experiment was repeated with a population of European MBA students who, despite starting from similar priors, reported conditional probabilities closer to the provided models' forecasts than policymakers. There was also no effect of presentation format in the MBA sample. These results highlight the importance of testing visualization tools directly on the population of interest
Future climate effects on suitability for growth of oil palms in Malaysia and Indonesia
The production of palm oil (PO) is highly profitable. The economies of the principal producers, Malaysia and Indonesia, and others, benefit considerably. Climate change (CC) will most likely have an impact on the distribution of oil palms (OP) (Elaeis guineensis). Here we present modelled CC projections with respect to the suitability of growing OP, in Malaysia and Indonesia. A process-oriented niche model of OP was developed using CLIMEX to estimate its potential distribution under current and future climate scenarios. Two Global Climate Models (GCMs), CSIRO-Mk3.0 and MIROC-H, were used to explore the impacts of CC under the A1B and A2 scenarios for 2030, 2070 and 2100. Decreases in climatic suitability for OP in the region were gradual by 2030 but became more pronounced by 2100. These projections imply that OP growth will be affected severely by CC, with obvious implications to the economies of (a) Indonesia and Malaysia and (b) the PO industry, but with potential benefits towards reducing CC. A possible remedial action is to concentrate research on development of new varieties of OP that are less vulnerable to CC.The Portuguese-based authors thank the FCT Strategic Project of UID/BIO/04469/2013 unit, the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and the Project "BioEnv - Biotechnology and Bioengineering for a sustainable world", REF. NORTE-07-0124-FEDER-000048, co-funded by the Programa Operacional Regional do Norte (ON.2 - O Novo Norte), QREN, FEDER
- …
