14 research outputs found
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
Mechanical and microstructural characterization of aluminum melted with alternative method
Constitutive Model of Triple-Step-Aged Al–Mg–Si Alloy Incorporating Precipitation Kinetics
Full genome-based characterization of G4P[6] rotavirus strains from diarrheic patients in Thailand: Evidence for independent porcine-to-human interspecies transmission events
Giardia duodenalis: New Research Developments in Pathophysiology, Pathogenesis, and Virulence Factors
Giardia duodenalis is a very common, ubiquitous, intestinal protozoan parasite infecting animals and humans. Of the eight distinct genetic assemblages known to date, assemblages A and B are infectious to humans. Giardia is the most commonly recognized cause of traveller’s diarrhea. Giardiasis impairs weight gain and is responsible for a variety of extra-intestinal and post-infectious complications, including post-infectious irritable bowel syndrome, chronic fatigue, failure to thrive, and cognitive impairment. Giardiasis occurs in the absence of invasion of the intestinal tissues by the trophozoites and in the absence of any overt inflammatory cell infiltration, with the exception of a modest increase in intraepithelial lymphocytes and mast cells. In endemic parts of the World where the infection is often concurrent with bacterial enteritis causing inflammation-driven diarrheal disease, giardiasis appears to be protective against diarrhea. Recent observations have demonstrated that this effect may be due to a direct immuno-modulating effect of the parasite via its cathepsin B cysteine protease which cleaves pro-inflammatory CXCL8. No known toxin has yet been directly implicated in the pathophysiology of giardiasis. Diarrhea in giardiasis is mostly malabsorptive in nature, rather than hypersecretory. Findings from ongoing research indicate that the post-infectious effects of giardiasis may be due to microbiota dysbiosis induced by the parasite during the acute phase of infection.Ye
