10,370 research outputs found
Dynamics of the solar magnetic bright points derived from their horizontal motions
The sub-arcsec bright points (BP) associated with the small scale magnetic
fields in the lower solar atmosphere are advected by the evolution of the
photospheric granules. We measure various quantities related to the horizontal
motions of the BPs observed in two wavelengths, including the velocity
auto-correlation function. A 1 hr time sequence of wideband H
observations conducted at the \textit{Swedish 1-m Solar Telescope}
(\textit{SST}), and a 4 hr \textit{Hinode} \textit{G}-band time sequence
observed with the Solar Optical telescope are used in this work. We follow 97
\textit{SST} and 212 \textit{Hinode} BPs with 3800 and 1950 individual velocity
measurements respectively. For its high cadence of 5 s as compared to 30 s for
\textit{Hinode} data, we emphasize more on the results from \textit{SST} data.
The BP positional uncertainty achieved by \textit{SST} is as low as 3 km. The
position errors contribute 0.75 km s to the variance of the observed
velocities. The \textit{raw} and \textit{corrected} velocity measurements in
both directions, i.e., , have Gaussian distributions with standard
deviations of and km s respectively. The BP
motions have correlation times of about s. We construct the power
spectrum of the horizontal motions as a function of frequency, a quantity that
is useful and relevant to the studies of generation of Alfv\'en waves.
Photospheric turbulent diffusion at time scales less than 200 s is found to
satisfy a power law with an index of 1.59.Comment: Accepted for publication in The Astrophysical Journal. 24 pages, 9
figures, and 1 movie (not included
Mutant mitochondrial elongation factor G1 and combined oxidative phosphorylation deficiency
Although most components of the mitochondrial translation apparatus are encoded by nuclear genes, all known molecular defects associated with impaired mitochondrial translation are due to mutations in mitochondrial DNA. We investigated two siblings with a severe defect in mitochondrial translation, reduced levels of oxidative phosphorylation complexes containing mitochondrial DNA (mtDNA)–encoded subunits, and progressive hepatoencephalopathy. We mapped the defective gene to a region on chromosome 3q containing elongation factor G1 (EFG1), which encodes a mitochondrial translation factor. Sequencing of EFG1 revealed a mutation affecting a conserved residue of the guanosine triphosphate (GTP)–binding domain. These results define a new class of gene defects underlying disorders of oxidative phosphorylation
ROSAT HRI Observations of the Crab Pulsar: An Improved Temperature upper limit for PSR 0531+21
ROSAT HRI observations have been used to determine an upper limit of the Crab
pulsar surface temperature from the off-pulse count rate. For a neutron star
mass of 1.4 \Mo and a radius of 10 km as well as the standard distance and
interstellar column density, the redshifted temperature upper limit is\/
K . This is the lowest temperature
upper limit obtained for the Crab pulsar so far. Slightly different values for
are computed for the various neutron star models available in the
literature, reflecting the difference in the equation of state.Comment: 5 pages, uuencoded postscript, to be published in the Proceedings of
the NATO Advanced Study Insitute on "Lives of the Neutron Stars", ed. A.
Alpar, U. Kiziloglu and J. van Paradijs ( Kluwer, Dordrecht, 1995 )
Discordant bioinformatic predictions of antimicrobial resistance from whole-genome sequencing data of bacterial isolates: an inter-laboratory study.
Antimicrobial resistance (AMR) poses a threat to public health. Clinical microbiology laboratories typically rely on culturing bacteria for antimicrobial-susceptibility testing (AST). As the implementation costs and technical barriers fall, whole-genome sequencing (WGS) has emerged as a 'one-stop' test for epidemiological and predictive AST results. Few published comparisons exist for the myriad analytical pipelines used for predicting AMR. To address this, we performed an inter-laboratory study providing sets of participating researchers with identical short-read WGS data from clinical isolates, allowing us to assess the reproducibility of the bioinformatic prediction of AMR between participants, and identify problem cases and factors that lead to discordant results. We produced ten WGS datasets of varying quality from cultured carbapenem-resistant organisms obtained from clinical samples sequenced on either an Illumina NextSeq or HiSeq instrument. Nine participating teams ('participants') were provided these sequence data without any other contextual information. Each participant used their choice of pipeline to determine the species, the presence of resistance-associated genes, and to predict susceptibility or resistance to amikacin, gentamicin, ciprofloxacin and cefotaxime. We found participants predicted different numbers of AMR-associated genes and different gene variants from the same clinical samples. The quality of the sequence data, choice of bioinformatic pipeline and interpretation of the results all contributed to discordance between participants. Although much of the inaccurate gene variant annotation did not affect genotypic resistance predictions, we observed low specificity when compared to phenotypic AST results, but this improved in samples with higher read depths. Had the results been used to predict AST and guide treatment, a different antibiotic would have been recommended for each isolate by at least one participant. These challenges, at the final analytical stage of using WGS to predict AMR, suggest the need for refinements when using this technology in clinical settings. Comprehensive public resistance sequence databases, full recommendations on sequence data quality and standardization in the comparisons between genotype and resistance phenotypes will all play a fundamental role in the successful implementation of AST prediction using WGS in clinical microbiology laboratories
Imaging transverse electron focusing in semiconducting heterostructures with spin-orbit coupling
Transverse electron focusing in two-dimensional electron gases (2DEGs) with
strong spin-orbit coupling is revisited. The transverse focusing is related to
the transmission between two contacts at the edge of a 2DEG when a
perpendicular magnetic field is applied. Scanning probe microscopy imaging
techniques can be used to study the electron flow in these systems. Using
numerical techniques we simulate the images that could be obtained in such
experiments. We show that hybrid edge states can be imaged and that the
outgoing flux can be polarized if the microscope tip probe is placed in
specific positions.Comment: Contribution to the Book/Proceedings of the PITP Les Houches School
on "Quantum Magnetism" held on June, 2006. Final forma
Mid-mantle deformation inferred from seismic anisotropy
With time, convective processes in the Earth's mantle will tend to align crystals, grains and inclusions. This mantle fabric is detectable seismologically, as it produces an anisotropy in material properties—in particular, a directional dependence in seismic-wave velocity. This alignment is enhanced at the boundaries of the mantle where there are rapid changes in the direction and magnitude of mantle flow, and therefore most observations of anisotropy are confined to the uppermost mantle or lithosphere and the lowermost-mantle analogue of the lithosphere, the D" region. Here we present evidence from shear-wave splitting measurements for mid-mantle anisotropy in the vicinity of the 660-km discontinuity, the boundary between the upper and lower mantle. Deep-focus earthquakes in the Tonga–Kermadec and New Hebrides subduction zones recorded at Australian seismograph stations record some of the largest values of shear-wave splitting hitherto reported. The results suggest that, at least locally, there may exist a mid-mantle boundary layer, which could indicate the impediment of flow between the upper and lower mantle in this region
Extension of Yeast Chronological Lifespan by Methylamine
Background: Chronological aging of yeast cells is commonly used as a model for aging of human post-mitotic cells. The yeast Saccharomyces cerevisiae grown on glucose in the presence of ammonium sulphate is mainly used in yeast aging research. We have analyzed chronological aging of the yeast Hansenula polymorpha grown at conditions that require primary peroxisome metabolism for growth.
Methodology/Principal Findings: The chronological lifespan of H. polymorpha is strongly enhanced when cells are grown on methanol or ethanol, metabolized by peroxisome enzymes, relative to growth on glucose that does not require peroxisomes. The short lifespan of H. polymorpha on glucose is mainly due to medium acidification, whereas most likely ROS do not play an important role. Growth of cells on methanol/methylamine instead of methanol/ammonium sulphate resulted in further lifespan enhancement. This was unrelated to medium acidification. We show that oxidation of methylamine by peroxisomal amine oxidase at carbon starvation conditions is responsible for lifespan extension. The methylamine oxidation product formaldehyde is further oxidized resulting in NADH generation, which contributes to increased ATP generation and reduction of ROS levels in the stationary phase.
Conclusion/Significance: We conclude that primary peroxisome metabolism enhanced chronological lifespan of H. polymorpha. Moreover, the possibility to generate NADH at carbon starvation conditions by an organic nitrogen source supports further extension of the lifespan of the cell. Consequently, the interpretation of CLS analyses in yeast should include possible effects on the energy status of the cell.
Characterization of a Si(Li) Compton polarimeter for the hard x-ray regime, using synchrotron radiation.
BACKGROUND: Buruli ulcer (BU), caused by Mycobacterium ulcerans (M. ulcerans), is a necrotizing skin disease found in more than 30 countries worldwide. BU incidence is highest in West Africa; however, cases have substantially increased in coastal regions of southern Australia over the past 30 years. Although the mode of transmission remains uncertain, the spatial pattern of BU emergence in recent years seems to suggest that there is an environmental niche for M. ulcerans and BU prevalence. METHODOLOGY/PRINCIPAL FINDINGS: Network analysis was applied to BU cases in Victoria, Australia, from 1981-2008. Results revealed a non-random spatio-temporal pattern at the regional scale as well as a stable and efficient BU disease network, indicating that deterministic factors influence the occurrence of this disease. Monthly BU incidence reported by locality was analyzed with landscape and climate data using a multilevel Poisson regression approach. The results suggest the highest BU risk areas occur at low elevations with forested land cover, similar to previous studies of BU risk in West Africa. Additionally, climate conditions as far as 1.5 years in advance appear to impact disease incidence. Warmer and wetter conditions 18-19 months prior to case emergence, followed by a dry period approximately 5 months prior to case emergence seem to favor the occurrence of BU. CONCLUSIONS/SIGNIFICANCE: The BU network structure in Victoria, Australia, suggests external environmental factors favor M. ulcerans transmission and, therefore, BU incidence. A unique combination of environmental conditions, including land cover type, temperature and a wet-dry sequence, may produce habitat characteristics that support M. ulcerans transmission and BU prevalence. These findings imply that future BU research efforts on transmission mechanisms should focus on potential vectors/reservoirs found in those environmental niches. Further, this study is the first to quantitatively estimate environmental lag times associated with BU outbreaks, providing insights for future transmission investigations
Early academic achievement in children with isolated clefts: a population-based study in England
OBJECTIVES: We used national data to study differences in academic achievement between 5-year-old children with an isolated oral cleft and the general population. We also assessed differences by cleft type. METHODS: Children born in England with an oral cleft were identified in a national cleft registry. Their records were linked to databases of hospital admissions (to identify additional anomalies) and educational outcomes. Z-scores (signed number of SD actual score is above national average) were calculated to make outcome scores comparable across school years and across six assessed areas (personal development, communication and language, maths, knowledge of world, physical development andcreative development). RESULTS: 2802 children without additional anomalies, 5 years old between 2006 and 2012, were included. Academic achievement was significantly below national average for all six assessed areas with z-scores ranging from -0.24 (95% CI -0.32 to -0.16) for knowledge of world to -0.31 (-0.38 to -0.23) for personal development. Differences were small with only a cleft lip but considerably larger with clefts involving the palate. 29.4% of children were documented as having special education needs (national rate 9.7%), which varied according to cleft type from 13.2% with cleft lip to 47.6% with bilateral cleft lip and palate. CONCLUSIONS: Compared with national average, 5-year-old children with an isolated oral cleft, especially those involving the palate, have significantly poorer academic achievement across all areas of learning. These outcomes reflect results of modern surgical techniques and multidisciplinary approach. Children with a cleft may benefit from extra academic support when starting school
100 Gb/s Multicarrier THz Wireless Transmission System With High Frequency Stability Based on A Gain-Switched Laser Comb Source
We propose and experimentally demonstrate a photonic multichannel terahertz (THz) wireless system with up to four optical subcarriers and total capacity as high as 100 Gb/s by employing an externally injected gain-switched laser comb source. Highly coherent multiple optical carriers with different spacing are produced using the gain switching technique. Single- and multichannel Terahertz (THz) wireless signals are generated using heterodyne mixing of modulated single or multiple carriers with one unmodulated optical tone spaced by about 200 GHz. The frequency stability and the phase noise of the gain switched comb laser are evaluated against free-running lasers. Wireless transmission is demonstrated for single and three optical subcarriers modulated with 8 or 10 GBd quadrature phase-shift keying (QPSK) (48 or 60 Gb/s, respectively) or for four optical subcarriers modulated with 12.5 GBd QPSK (100 Gb/s). The system performance was evaluated for single- and multicarrier wireless THz transmissions at around 200 GHz, with and without 40 km fiber transmission. The system is also modeled to study the effect of the cross talk between neighboring subcarriers for correlated and decorrelated data. This system reduces digital signal processing requirements due to the high-frequency stability of the gain-switched comb source, increases the overall transmission rate, and relaxes the optoelectronic bandwidth requirements
- …
