1,472 research outputs found
Velocity and concentration measurements in initial region of submerged round jets in stagnant environment and in coflow
Velocity and concentration fields are measured in submerged round jets in a stagnant environment and in coflow using laser Doppler anemometry and laser-induced fluorescence. Measurements are made in the initial region within distances of 40 jet exit diameter at jet Reynolds number between 1000 and 5000 and coflow-to-jet velocity ratio from 0 to 0.43. Different behaviors of jet spreading and dilution are found in jets at three different ranges of Reynolds number in which the jets are classified as initially laminar, transitional or turbulent. In the zone of established flow, the jet centerline velocity and concentration decay with downstream distance at different rates in the three groups of jets. For jets in coflow, axial development of normalized forms of centerline mean excess velocity and mean concentration at different velocity ratios can be reasonably well collapsed onto universal trends through the use of momentum length scale. Turbulence properties inside a jet are increased by the presence of a strong coflow. Inside the zone of flow establishment, some strange features are observed on jet turbulence properties. The length of zone of flow establishment increases from the turbulent jets, to the transition jets and to the laminar jets. The zone lengths for concentration are shorter than those for velocity by one to two jet exit diameters. Both lengths are shortened further in the presence of a coflow. For jets a stagnant environment and in the strong jet flow region of jets in coflow, jet widths increase linearly with downstream distance in transitional and turbulent jets. Self-similarity of radial profiles of mean velocity or excess velocity, mean concentration, turbulence intensities and concentration fluctuation level is explored in the zone of established flow. © 2009 International Association for Hydraulic Engineering and Research, Asia Pacific Division.postprin
Gabriel Triangulations and Angle-Monotone Graphs: Local Routing and Recognition
A geometric graph is angle-monotone if every pair of vertices has a path
between them that---after some rotation---is - and -monotone.
Angle-monotone graphs are -spanners and they are increasing-chord
graphs. Dehkordi, Frati, and Gudmundsson introduced angle-monotone graphs in
2014 and proved that Gabriel triangulations are angle-monotone graphs. We give
a polynomial time algorithm to recognize angle-monotone geometric graphs. We
prove that every point set has a plane geometric graph that is generalized
angle-monotone---specifically, we prove that the half--graph is
generalized angle-monotone. We give a local routing algorithm for Gabriel
triangulations that finds a path from any vertex to any vertex whose
length is within times the Euclidean distance from to .
Finally, we prove some lower bounds and limits on local routing algorithms on
Gabriel triangulations.Comment: Appears in the Proceedings of the 24th International Symposium on
Graph Drawing and Network Visualization (GD 2016
Fractional quantum Hall effect in a quantum point contact at filling fraction 5/2
Recent theories suggest that the excitations of certain quantum Hall states
may have exotic braiding statistics which could be used to build topological
quantum gates. This has prompted an experimental push to study such states
using confined geometries where the statistics can be tested. We study the
transport properties of quantum point contacts (QPCs) fabricated on a
GaAs/AlGaAs two dimensional electron gas that exhibits well-developed
fractional quantum Hall effect, including at bulk filling fraction 5/2. We find
that a plateau at effective QPC filling factor 5/2 is identifiable in point
contacts with lithographic widths of 1.2 microns and 0.8 microns, but not 0.5
microns. We study the temperature and dc-current-bias dependence of the 5/2
plateau in the QPC, as well as neighboring fractional and integer plateaus in
the QPC while keeping the bulk at filling factor 3. Transport near QPC filling
factor 5/2 is consistent with a picture of chiral Luttinger liquid edge-states
with inter-edge tunneling, suggesting that an incompressible state at 5/2 forms
in this confined geometry
Observation of a One-Dimensional Spin-Orbit Gap in a Quantum Wire
Understanding the flow of spins in magnetic layered structures has enabled an
increase in data storage density in hard drives over the past decade of more
than two orders of magnitude1. Following this remarkable success, the field of
'spintronics' or spin-based electronics is moving beyond effects based on local
spin polarisation and is turning its attention to spin-orbit interaction (SOI)
effects, which hold promise for the production, detection and manipulation of
spin currents, allowing coherent transmission of information within a device.
While SOI-induced spin transport effects have been observed in two- and
three-dimensional samples, these have been subtle and elusive, often detected
only indirectly in electrical transport or else with more sophisticated
techniques. Here we present the first observation of a predicted 'spin-orbit
gap' in a one-dimensional sample, where counter-propagating spins, constituting
a spin current, are accompanied by a clear signal in the easily-measured linear
conductance of the system.Comment: 10 pages, 5 figures, supplementary informatio
Fully gapped topological surface states in BiSe films induced by a d-wave high-temperature superconductor
Topological insulators are a new class of materials, that exhibit robust
gapless surface states protected by time-reversal symmetry. The interplay
between such symmetry-protected topological surface states and symmetry-broken
states (e.g. superconductivity) provides a platform for exploring novel quantum
phenomena and new functionalities, such as 1D chiral or helical gapless
Majorana fermions, and Majorana zero modes which may find application in
fault-tolerant quantum computation. Inducing superconductivity on topological
surface states is a prerequisite for their experimental realization. Here by
growing high quality topological insulator BiSe films on a d-wave
superconductor BiSrCaCuO using molecular beam epitaxy,
we are able to induce high temperature superconductivity on the surface states
of BiSe films with a large pairing gap up to 15 meV. Interestingly,
distinct from the d-wave pairing of BiSrCaCuO, the
proximity-induced gap on the surface states is nearly isotropic and consistent
with predominant s-wave pairing as revealed by angle-resolved photoemission
spectroscopy. Our work could provide a critical step toward the realization of
the long sought-after Majorana zero modes.Comment: Nature Physics, DOI:10.1038/nphys274
Exploiting Scene-specific Features for Object Goal Navigation
Can the intrinsic relation between an object and the room in which it is
usually located help agents in the Visual Navigation Task? We study this
question in the context of Object Navigation, a problem in which an agent has
to reach an object of a specific class while moving in a complex domestic
environment. In this paper, we introduce a new reduced dataset that speeds up
the training of navigation models, a notoriously complex task. Our proposed
dataset permits the training of models that do not exploit online-built maps in
reasonable times even without the use of huge computational resources.
Therefore, this reduced dataset guarantees a significant benchmark and it can
be used to identify promising models that could be then tried on bigger and
more challenging datasets. Subsequently, we propose the SMTSC model, an
attention-based model capable of exploiting the correlation between scenes and
objects contained in them, highlighting quantitatively how the idea is correct.Comment: Accepted at ACVR2020 ECCV2020 Worksho
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Sustained Action of Developmental Ethanol Exposure on the Cortisol Response to Stress in Zebrafish Larvae and Adults
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedThis study was supported by the National Centre for the replacement, refinement and reduction of animals in research
Bioaccumulation and ecotoxicity of carbon nanotubes
Carbon nanotubes (CNT) have numerous industrial applications and may be released to the environment. In the aquatic environment, pristine or functionalized CNT have different dispersion behavior, potentially leading to different risks of exposure along the water column. Data included in this review indicate that CNT do not cross biological barriers readily. When internalized, only a minimal fraction of CNT translocate into organism body compartments. The reported CNT toxicity depends on exposure conditions, model organism, CNT-type, dispersion state and concentration. In the ecotoxicological tests, the aquatic organisms were generally found to be more sensitive than terrestrial organisms. Invertebrates were more sensitive than vertebrates. Single-walled CNT were found to be more toxic than double-/multi-walled CNT. Generally, the effect concentrations documented in literature were above current modeled average environmental concentrations. Measurement data are needed for estimation of environmental no-effect concentrations. Future studies with benchmark materials are needed to generate comparable results. Studies have to include better characterization of the starting materials, of the dispersions and of the biological fate, to obtain better knowledge of the exposure/effect relationships
- …
