311 research outputs found

    Multiple ITS Copies Reveal Extensive Hybridization within Rheum (Polygonaceae), a Genus That Has Undergone Rapid Radiation

    Get PDF
    During adaptive radiation events, characters can arise multiple times due to parallel evolution, but transfer of traits through hybridization provides an alternative explanation for the same character appearing in apparently non-sister lineages. The signature of hybridization can be detected in incongruence between phylogenies derived from different markers, or from the presence of two divergent versions of a nuclear marker such as ITS within one individual.In this study, we cloned and sequenced ITS regions for 30 species of the genus Rheum, and compared them with a cpDNA phylogeny. Seven species contained two divergent copies of ITS that resolved in different clades from one another in each case, indicating hybridization events too recent for concerted evolution to have homogenised the ITS sequences. Hybridization was also indicated in at least two further species via incongruence in their position between ITS and cpDNA phylogenies. None of the ITS sequences present in these nine species matched those detected in any other species, which provides tentative evidence against recent introgression as an explanation. Rheum globulosum, previously indicated by cpDNA to represent an independent origin of decumbent habit, is indicated by ITS to be part of clade of decumbent species, which acquired cpDNA of another clade via hybridization. However decumbent and glasshouse morphology are confirmed to have arisen three and two times, respectively.These findings suggested that hybridization among QTP species of Rheum has been extensive, and that a role of hybridization in diversification of Rheum requires investigation

    The muon system of the Daya Bay Reactor antineutrino experiment

    Get PDF
    postprin

    Search for a Light Sterile Neutrino at Daya Bay

    Get PDF
    published_or_final_versio

    Temporal trend and climate factors of hemorrhagic fever with renal syndrome epidemic in Shenyang City, China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemorrhagic fever with renal syndrome (HFRS) is an important infectious disease caused by different species of hantaviruses. As a rodent-borne disease with a seasonal distribution, external environmental factors including climate factors may play a significant role in its transmission. The city of Shenyang is one of the most seriously endemic areas for HFRS. Here, we characterized the dynamic temporal trend of HFRS, and identified climate-related risk factors and their roles in HFRS transmission in Shenyang, China.</p> <p>Methods</p> <p>The annual and monthly cumulative numbers of HFRS cases from 2004 to 2009 were calculated and plotted to show the annual and seasonal fluctuation in Shenyang. Cross-correlation and autocorrelation analyses were performed to detect the lagged effect of climate factors on HFRS transmission and the autocorrelation of monthly HFRS cases. Principal component analysis was constructed by using climate data from 2004 to 2009 to extract principal components of climate factors to reduce co-linearity. The extracted principal components and autocorrelation terms of monthly HFRS cases were added into a multiple regression model called principal components regression model (PCR) to quantify the relationship between climate factors, autocorrelation terms and transmission of HFRS. The PCR model was compared to a general multiple regression model conducted only with climate factors as independent variables.</p> <p>Results</p> <p>A distinctly declining temporal trend of annual HFRS incidence was identified. HFRS cases were reported every month, and the two peak periods occurred in spring (March to May) and winter (November to January), during which, nearly 75% of the HFRS cases were reported. Three principal components were extracted with a cumulative contribution rate of 86.06%. Component 1 represented MinRH<sub>0</sub>, MT<sub>1</sub>, RH<sub>1</sub>, and MWV<sub>1</sub>; component 2 represented RH<sub>2</sub>, MaxT<sub>3</sub>, and MAP<sub>3</sub>; and component 3 represented MaxT<sub>2</sub>, MAP<sub>2</sub>, and MWV<sub>2</sub>. The PCR model was composed of three principal components and two autocorrelation terms. The association between HFRS epidemics and climate factors was better explained in the PCR model (<it>F </it>= 446.452, <it>P </it>< 0.001, adjusted <it>R</it><sup>2 </sup>= 0.75) than in the general multiple regression model (<it>F </it>= 223.670, <it>P </it>< 0.000, adjusted <it>R</it><sup>2 </sup>= 0.51).</p> <p>Conclusion</p> <p>The temporal distribution of HFRS in Shenyang varied in different years with a distinctly declining trend. The monthly trends of HFRS were significantly associated with local temperature, relative humidity, precipitation, air pressure, and wind velocity of the different previous months. The model conducted in this study will make HFRS surveillance simpler and the control of HFRS more targeted in Shenyang.</p

    Independent measure of the neutrino mixing angle θ13 via neutron capture on hydrogen at Daya Bay

    Get PDF
    published_or_final_versio

    Improved Measurement of Electron Antineutrino Disappearance at Daya Bay

    Get PDF
    postprin

    Three phylogenetic groups have driven the recent population expansion of Cryptococcus neoformans

    Get PDF
    Cryptococcus neoformans (C. neoformans var. grubii) is an environmentally acquired pathogen causing 181,000 HIV-associated deaths each year. We sequenced 699 isolates, primarily C. neoformans from HIV-infected patients, from 5 countries in Asia and Africa. The phylogeny of C. neoformans reveals a recent exponential population expansion, consistent with the increase in the number of susceptible hosts. In our study population, this expansion has been driven by three sub-clades of the C. neoformans VNIa lineage; VNIa-4, VNIa-5 and VNIa-93. These three sub-clades account for 91% of clinical isolates sequenced in our study. Combining the genome data with clinical information, we find that the VNIa-93 sub-clade, the most common sub-clade in Uganda and Malawi, was associated with better outcomes than VNIa-4 and VNIa-5, which predominate in Southeast Asia. This study lays the foundation for further work investigating the dominance of VNIa-4, VNIa-5 and VNIa-93 and the association between lineage and clinical phenotype

    A new heat propagation velocity prevails over Brownian particle velocities in determining the thermal conductivities of nanofluids

    Get PDF
    An alternative insight is presented concerning heat propagation velocity scales in predicting the effective thermal conductivities of nanofluids. The widely applied Brownian particle velocities in published literature are often found too slow to describe the relatively higher nanofluid conductivities. In contrast, the present model proposes a faster heat transfer velocity at the same order as the speed of sound, rooted in a modified kinetic principle. In addition, this model accounts for both nanoparticle heat dissipation as well as coagulation effects. This novel model of effective thermal conductivities of nanofluids agrees well with an extended range of experimental data

    USP18-Based Negative Feedback Control Is Induced by Type I and Type III Interferons and Specifically Inactivates Interferon α Response

    Get PDF
    Type I interferons (IFN) are cytokines that are rapidly secreted upon microbial infections and regulate all aspects of the immune response. In humans 15 type I IFN subtypes exist, of which IFN α2 and IFN β are used in the clinic for treatment of different pathologies. IFN α2 and IFN β are non redundant in their expression and in their potency to exert specific bioactivities. The more recently identified type III IFNs (3 IFN λ or IL-28/IL-29) bind an unrelated cell-type restricted receptor. Downstream of these two receptor complexes is a shared Jak/Stat pathway. Several mechanisms that contribute to the shut down of the IFN-induced signaling have been described at the molecular level. In particular, it has long been known that type I IFN induces the establishment of a desensitized state. In this work we asked how the IFN-induced desensitization integrates into the network built by the multiple type I IFN subtypes and type III IFNs. We show that priming of cells with either type I IFN or type III IFN interferes with the cell's ability to further respond to all IFN α subtypes. Importantly, primed cells are differentially desensitized in that they retain sensitivity to IFN β. We show that USP18 is necessary and sufficient to induce differential desensitization, by impairing the formation of functional binding sites for IFN α2. Our data highlight a new type of differential between IFNs α and IFN β and underline a cross-talk between type I and type III IFN. This cross-talk could shed light on the reported genetic variation in the IFN λ loci, which has been associated with persistence of hepatitis C virus and patient's response to IFN α2 therapy
    corecore