10 research outputs found
Growth of the peritrich epibiont Zoothamnium intermedium Precht, 1935 (Ciliophora, Peritrichia) estimated from laboratory experiments
Attachment of the peritrich epibiont Zoothamnium intermedium Precht, 1935 (Ciliophora, Peritrichia) to artificial substrates in a natural environment
Peritrich ciliates are commonly found as epibionts, colonizing living organisms, or attached to non-living substrates in freshwater, estuarine and marine environments. Several species of peritrich epibionts are obligate, which means that they are able to only colonize other organisms, while others are facultative attaching to living or non-living substrates. The peritrich Zoothamnium intermedium is commonly found as epibiont on the copepod species Acartia tonsa and Eurytemora affinis in Chesapeake Bay, USA. Previous studies demonstrated that Z. intermedium is not able to attach to non-living substrates in the laboratory; with free-swimming stages (telotrochs) dying when living substrates are not available for colonization. The present study investigated the ability of Z. intermdium to colonize artificial substrates in the field. Observations were carried out while the peritrich ciliate was colonizing copepods in Rhode River, a tributary of Chesapeake Bay. Results demonstrated that four species of Zoothamnium were recovered from artificial substrates, but none of them was Z. intermedium. At the same time, Z. intermedium was colonizing adults and copepodites of E. affinis and A. tonsa during the whole study period. These results, in addition to laboratory observations, suggest that Z. intermedium is an obligate epibiont.Ciliados peritríquios são normalmente encontrados como epibiontes, colonizando substratos vivos, ou em substratos inanimados em ambientes de água doce, estuarinos e marinhos. Muitas espécies de peritríquios epibiontes podem ser consideradas obrigatórias quando estão aptas a colonizar apenas substratos vivos, ou facultativos quando conseguem colonizar substratos vivos ou inanimados. A espécie de ciliado peritríquio Zoothamnium intermedium é encontrada colonizando os copépodos Acartia tonsa e Eurytemora affinis na Chesapeake Bay, EUA. Estudos preliminares demonstraram que Z. intermedium não consegue colonizar substratos inanimados em laboratório e que os estágios livre-natantes (telotróquios) morrem quando não estão expostos a algum substrato vivo. No presente estudo, foi investigada a habilidade de Z. intermedium colonizar substratos artificiais no campo. As observações foram realizadas no Rhode River, um afluente da Chesapeake Bay, enquanto Z. intermedium era encontrado colonizando copépodos. Os resultados demonstraram que quatro espécies de Zoothamnium colonizaram os substratos artificiais, mas nenhuma delas era Z. intermedium. No mesmo período, Z. intermedium foi encontrado colonizando copepoditos e adultos de A. tonsa e E. affinis. Estes resultados, juntamente com as observações de laboratório, sugerem que Z. intermedium é um epibionte obrigatório
Attachment of the peritrich epibiont Zoothamnium intermedium Precht, 1935 (Ciliophora, Peritrichia) to artificial substrates in a natural environment
Growth of the peritrich epibiont Zoothamnium intermedium Precht, 1935 (Ciliophora, Peritrichia) estimated from laboratory experiments
Ciliates - Protists with complex morphologies and ambiguous early fossil record
Since ciliates rarely possess structures that easily fossilize, we are limited in our ability to use paleontological studies to reconstruct the early evolution of this large and ecologically important clade of protists. Tintinnids, a group of loricate (house-forming) planktonic ciliates, are the only group that has a significant fossil record. Putative tintinnid fossils from rocks older than Jurassic, however, possess few to no characters that can be found in extant ciliates; these fossils are best described as 'incertae sedis eukaryotes'. Here, we review the Devonian fossil Nassacysta reticulata and propose that it is likewise another 'incertae sedis eukaryote due to the lack of any unambiguous ciliate characters. Future tintinnid fossil descriptions would be most helpful if: (i) neutral terminology is used in the descriptions but ciliate-specific terminology in the interpretations; (ii) the current ciliate classification is used, although fossil data may expand or modify classifications based on modem forms; (iii) close collaboration with specialists studying extant ciliates is done; and (iv) editors include an expert of extant ciliates in the review process. (C) 2015 Elsevier B.V. All rights reserved.Since ciliates rarely possess structures that easily fossilize, we are limited in our ability to use paleontological studies to reconstruct the early evolution of this large and ecologically important clade of protists. Tintinnids, a group of loricate (house-forming) planktonic ciliates, are the only group that has a significant fossil record. Putative tintinnid fossils from rocks older than Jurassic, however, possess few to no characters that can be found in extant ciliates; these fossils are best described as 'incertae sedis eukaryotes'. Here, we review the Devonian fossil Nassacysta reticulata and propose that it is likewise another 'incertae sedis eukaryote due to the lack of any unambiguous ciliate characters. Future tintinnid fossil descriptions would be most helpful if: (i) neutral terminology is used in the descriptions but ciliate-specific terminology in the interpretations; (ii) the current ciliate classification is used, although fossil data may expand or modify classifications based on modem forms; (iii) close collaboration with specialists studying extant ciliates is done; and (iv) editors include an expert of extant ciliates in the review process. (C) 2015 Elsevier B.V. All rights reserved
A Novel Colonial Ciliate Zoothamnium ignavum sp. nov. (Ciliophora, Oligohymenophorea) and Its Ectosymbiont Candidatus Navis piranensis gen. nov., sp. nov. from Shallow-Water Wood Falls
Symbioses between ciliate hosts and prokaryote or unicellular eukaryote symbionts are widespread. Here, we report on a novel ciliate species within the genus Zoothamnium Bory de St. Vincent, 1824, isolated from shallow-water sunken wood in the North Adriatic Sea (Mediterranean Sea), proposed as Zoothamnium ignavum sp. nov. We found this ciliate species to be associated with a novel genus of bacteria, here proposed as "Candidatus Navis piranensis" gen. nov., sp. nov. The descriptions of host and symbiont species are based on morphological and ultrastructural studies, the SSU rRNA sequences, and in situ hybridization with symbiont-specific probes. The host is characterized by alternate microzooids on alternate branches arising from a long, common stalk with an adhesive disc. Three different types of zooids are present: microzooids with a bulgy oral side, roundish to ellipsoid macrozooids, and terminal zooids ellipsoid when dividing or bulgy when undividing. The oral ciliature of the microzooids runs 1¼ turns in a clockwise direction around the peristomial disc when viewed from inside the cell and runs into the infundibulum, where it makes another ¾ turn. The ciliature consists of a paroral membrane (haplokinety), three adoral membranelles (polykineties), and one stomatogenic kinety (germinal kinety). One circular row of barren kinetosomes is present aborally (trochal band). Phylogenetic analyses placed Z. ignavum sp. nov. within the clade II of the polyphyletic family Zoothamniidae (Oligohymenophorea). The ectosymbiont was found to occur in two different morphotypes, as rods with pointed ends and coccoid rods. It forms a monophyletic group with two uncultured Gammaproteobacteria within an unclassified group of Gammaproteobacteria, and is only distantly related to the ectosymbiont of the closely related peritrich Z. niveum (Hemprich and Ehrenberg, 1831) Ehrenberg, 1838
Update on the use of Pristina longiseta Ehrenberg, 1828 (Oligochaeta: Naididae) as a toxicity test organism
Trichodinidae in commercial fish in South America.
Made available in DSpace on 2017-10-14T10:28:46Z (GMT). No. of bitstreams: 1
Trichodinidae.pdf: 740499 bytes, checksum: 0c6c50701e72dfe3c6c3ecb18e8caf2e (MD5)
Previous issue date: 2017-10-13bitstream/item/165031/1/Trichodinidae.pd
