2,563 research outputs found
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Test of CP invariance in vector-boson fusion production of the Higgs boson using the Optimal Observable method in the ditau decay channel with the ATLAS detector
A test of CP invariance in Higgs boson production via vector-boson fusion using the method of the Optimal Observable is presented. The analysis exploits the decay mode of the Higgs boson into a pair of τ leptons and is based on 20.3 fb - 1 of proton–proton collision data at s = 8 TeV collected by the ATLAS experiment at the LHC. Contributions from CP-violating interactions between the Higgs boson and electroweak gauge bosons are described in an effective field theory framework, in which the strength of CP violation is governed by a single parameter d~. The mean values and distributions of CP-odd observables agree with the expectation in the Standard Model and show no sign of CP violation. The CP-mixing parameter d~ is constrained to the interval (- 0.11 , 0.05) at 68% confidence level, consistent with the Standard Model expectation of d~ = 0
Performance of pile-up mitigation techniques for jets in pp collisions at √s=8 TeV using the ATLAS detector
The large rate of multiple simultaneous proton–proton interactions, or pile-up, generated by the Large Hadron Collider in Run 1 required the development of many new techniques to mitigate the adverse effects of these conditions. This paper describes the methods employed in the ATLAS experiment to correct for the impact of pile-up on jet energy and jet shapes, and for the presence of spurious additional jets, with a primary focus on the large 20.3 fb- 1data sample collected at a centre-of-mass energy of s=8TeV. The energy correction techniques that incorporate sophisticated estimates of the average pile-up energy density and tracking information are presented. Jet-to-vertex association techniques are discussed and projections of performance for the future are considered. Lastly, the extension of these techniques to mitigate the effect of pile-up on jet shapes using subtraction and grooming procedures is presented
Search for heavy ZZ resonances in the +−+− and +−νν¯ final states using proton–proton collisions at √s = 13 TeV with the ATLAS detector
A search for heavy resonances decaying into a
pair of Z bosons leading to +−+− and +−νν¯ final
states, where stands for either an electron or a muon, is
presented. The search uses proton–proton collision data at a
centre-of-mass energy of 13 TeV corresponding to an integrated
luminosity of 36.1 fb−1 collected with the ATLAS
detector during 2015 and 2016 at the Large Hadron Collider.
Different mass ranges for the hypothetical resonances are
considered, depending on the final state and model. The different
ranges span between 200 and 2000 GeV. The results
are interpreted as upper limits on the production cross section
of a spin-0 or spin-2 resonance. The upper limits for
the spin-0 resonance are translated to exclusion contours in
the context of Type-I and Type-II two-Higgs-doublet models,
while those for the spin-2 resonance are used to constrain
the Randall–Sundrum model with an extra dimension giving
rise to spin-2 graviton excitations
Measurement of the production cross-section of a single top quark in association with a Z boson in proton–proton collisions at 13 TeV with the ATLAS detector
The production of a top quark in association with a Z boson is investigated. The proton–proton collision data collected by the ATLAS experiment at the LHC in 2015 and 2016 at a centre-of-mass energy of s=13TeV are used, corresponding to an integrated luminosity of 36.1fb −1 . Events containing three identified leptons (electrons and/or muons) and two jets, one of which is identified as a b-quark jet are selected. The major backgrounds are diboson, tt¯ and Z+jets production. A neural network is used to improve the background rejection and extract the signal. The resulting significance is 4.2σ in the data and the expected significance is 5.4σ. The measured cross-section for tZq production is 600±170(stat.)±140(syst.)fb
Measurement of the kt splitting scales in Z → `` events in pp collisions at √s = 8 TeV with the ATLAS detector
A measurement of the splitting scales occuring in the k t jet-clustering algorithm is presented for final states containing a Z boson. The measurement is done using 20.2 fb −1 of proton-proton collision data collected at a centre-of-mass energy of s=8 TeV by the ATLAS experiment at the LHC in 2012. The measurement is based on chargedparticle track information, which is measured with excellent precision in the p T region relevant for the transition between the perturbative and the non-perturbative regimes. The data distributions are corrected for detector effects, and are found to deviate from state-of-the-art predictions in various regions of the observables.[Figure not available: see fulltext.]
A new method to distinguish hadronically decaying boosted Z bosons from W bosons using the ATLAS detector
The distribution of particles inside hadronic jets produced in the decay of boosted W and Z bosons can be used to discriminate such jets from the continuum background. Given that a jet has been identified as likely resulting from the hadronic decay of a boosted W or Z boson, this paper presents a technique for further differentiating Z bosons from W bosons. The variables used are jet mass, jet charge, and a b-tagging discriminant. A likelihood tagger is constructed from these variables and tested in the simulation of W′→ WZ for bosons in the transverse momentum range 200 GeV < pT< 400 GeV in s= 8 TeV pp collisions with the ATLAS detector at the LHC. For Z-boson tagging efficiencies of ϵZ= 90 , 50, and 10 % , one can achieve W+-boson tagging rejection factors (1 / ϵW+ ) of 1.7, 8.3 and 1000, respectively. It is not possible to measure these efficiencies in the data due to the lack of a pure sample of high pT, hadronically decaying Z bosons. However, the modelling of the tagger inputs for boosted W bosons is studied in data using a tt¯ -enriched sample of events in 20.3 fb- 1 of data at s= 8 TeV. The inputs are well modelled within uncertainties, which builds confidence in the expected tagger performance
Recommended from our members
Searches for exclusive Higgs and Z boson decays into J/ψ γ, ψ(2S) γ, and ϒ(nS) γ at s=13TeV with the ATLAS detector
Searches for the exclusive decays of the Higgs and Z bosons into a J/ψ, ψ(2S), or ϒ(nS) (n=1,2,3) meson and a photon are performed with a pp collision data sample corresponding to an integrated luminosity of 36.1fb collected at s=13TeV with the ATLAS detector at the CERN Large Hadron Collider. No significant excess of events is observed above the expected backgrounds, and 95% confidence-level upper limits on the branching fractions of the Higgs boson decays to J/ψγ, ψ(2S)γ, and ϒ(nS)γ of 3.5×10 , 2.0×10 , and (4.9,5.9,5.7)×10 , respectively, are obtained assuming Standard Model production. The corresponding 95% confidence-level upper limits for the branching fractions of the Z boson decays are 2.3×10 , 4.5×10 and (2.8,1.7,4.8)×10 , respectively. −1 −4 −3 −4 −6 −6 −
- …
