1,622 research outputs found
Messages from the other side: parasites receive damage cues from their host plants
As sessile organisms, plants rely on their environment for cues indicating imminent herbivory. These cues can originate from tissues on the same plant or from different individuals. Since parasitic plants form vascular connections with their host, parasites have the potential to receive cues from hosts that allow them to adjust defenses against future herbivory. However, the role of plant communication between hosts and parasites for herbivore defense remains poorly investigated. Here we examined the effects of damage to lupine hosts (Lupinus texensis) on responses of the attached hemiparasite (Castilleja indivisa), and indirectly, on a specialist herbivore of the parasite, buckeyes (Junonia coenia). Lupines produce alkaloids as defenses against herbivore that can be taken up by the parasite. We found that damage to lupine host plants by beet armyworm (Spodoptera exigua) significantly increased jasmonic acid (JA) levels in both the lupine host and parasite, suggesting uptake of phytohormones or priming of parasite defenses using host cues. However, lupine host damage did not induce changes in alkaloid levels in the hosts or parasites. Interestingly, the parasite had substantially higher concentrations of JA and alkaloids compared to lupine host plants. Buckeye herbivores consumed more parasite tissue when attached to damaged compared to undamaged hosts. We hypothesize that increased JA due to lupine host damage induced higher iridoid glycosides in the parasite, which are feeding stimulants for this specialist herbivore. Our results demonstrate that damage to hosts may affect both parasites and associated herbivores, indicating cascading effects of host damage on multiple trophic levels
General Form of the Color Potential Produced by Color Charges of the Quark
Constant electric charge satisfies the continuity equation where is the current density of the electron.
However, the Yang-Mills color current density of the quark
satisfies the equation which is not a continuity
equation () which implies that a color charge
of the quark is not constant but it is time dependent where
are color indices. In this paper we derive general form of color
potential produced by color charges of the quark. We find that the general form
of the color potential produced by the color charges of the quark at rest is
given by \Phi^a(x) =A_0^a(t,{\bf x}) =\frac{q^b(t-\frac{r}{c})}{r}\[\frac{{\rm
exp}[g\int dr \frac{Q(t-\frac{r}{c})}{r}] -1}{g \int dr
\frac{Q(t-\frac{r}{c})}{r}}\]_{ab} where integration is an indefinite
integration, ~~ , ~~, ~~ is the retarded time, ~~ is the speed
of light, ~~ is the position of the quark at the retarded
time and the repeated color indices (=1,2,...8) are summed. For constant
color charge we reproduce the Coulomb-like potential
which is consistent with the Maxwell theory where
constant electric charge produces the Coulomb potential
.Comment: Final version, two more sections added, 45 pages latex, accepted for
publication in JHE
Microbial differences between dental plaque and historic dental calculus are related to oral biofilm maturation stage
Dental calculus, calcified oral plaque biofilm, contains microbial and host biomolecules that can be used to study historic microbiome communities and host responses. Dental calculus does not typically accumulate as much today as historically, and clinical oral microbiome research studies focus primarily on living dental plaque biofilm. However, plaque and calculus reflect different conditions of the oral biofilm, and the differences in microbial characteristics between the sample types have not yet been systematically explored. Here, we compare the microbial profiles of modern dental plaque, modern dental calculus, and historic dental calculus to establish expected differences between these substrates.- Background - Results -- Authentication of a preserved oral biofilm in calculus samples -- Dental calculus and plaque biofilm communities are distinct -- Health-associated communities of dental plaque and calculus are distinct -- Signatures of health and of disease are shared in modern and historic calculus samples -- Microbial community differences between health and disease in calculus are poorly resolved -- Absence of caries-specific microbial profiles in dental calculus -- Microbial co-exclusion patterns in plaque and calculus reflect biofilm maturity -- Microbial complexes in plaque and calculus -- Functional prediction in calculus is poorly predictive of health status -- Proteomic profiles of historic healthy site calculus -- Correlations between taxonomic, proteomic, and metabolomic profiles - Discussion - Conclusions - Materials and methods --Historic and modern calculus sample collection DNA extraction -- DNA library construction and high-throughput sequencing -- DNA sequence processing -- Genetic assessment of historic calculus sample preservation -- Genetic microbial taxonomic profiling -- Principal component analysis -- Assessment of differentially abundant taxa -- Sparse partial least squares-discriminant analysis -- Assessment of microbial co-exclusion patterns -- Gene functional categorization with SEED -- Proteomics -- Metabolomics -- Regularized canonical correlation analysi
Recommended from our members
Measurement of Λ (1520) production in pp collisions at √s=7TeV and p–Pb collisions at √sNN=5.02TeV
The production of the Λ (1520) baryonic resonance has been measured at midrapidity in inelastic pp collisions at s=7TeV and in p–Pb collisions at sNN=5.02TeV for non-single diffractive events and in multiplicity classes. The resonance is reconstructed through its hadronic decay channel Λ (1520) → pK - and the charge conjugate with the ALICE detector. The integrated yields and mean transverse momenta are calculated from the measured transverse momentum distributions in pp and p–Pb collisions. The mean transverse momenta follow mass ordering as previously observed for other hyperons in the same collision systems. A Blast-Wave function constrained by other light hadrons (π, K, KS0, p, Λ) describes the shape of the Λ (1520) transverse momentum distribution up to 3.5GeV/c in p–Pb collisions. In the framework of this model, this observation suggests that the Λ (1520) resonance participates in the same collective radial flow as other light hadrons. The ratio of the yield of Λ (1520) to the yield of the ground state particle Λ remains constant as a function of charged-particle multiplicity, suggesting that there is no net effect of the hadronic phase in p–Pb collisions on the Λ (1520) yield
Recommended from our members
Measurement of prompt D0, D+, D*+, and DS+ production in p–Pb collisions at √sNN = 5.02 TeV
The measurement of the production of prompt D0, D+, D*+, and DS+ mesons in proton–lead (p–Pb) collisions at the centre-of-mass energy per nucleon pair of sNN = 5.02 TeV, with an integrated luminosity of 292 ± 11 μb−1, are reported. Differential production cross sections are measured at mid-rapidity (−0.96 < ycms< 0.04) as a function of transverse momentum (pT) in the intervals 0 < pT< 36 GeV/c for D0, 1 < pT< 36 GeV/c for D+ and D*+, and 2 < pT< 24 GeV/c for D+ mesons. For each species, the nuclear modification factor RpPb is calculated as a function of pT using a proton-proton (pp) ref- erence measured at the same collision energy. The results are compatible with unity in the whole pT range. The average of the non-strange D mesons RpPb is compared with theoretical model predictions that include initial-state effects and parton transport model predictions. The pT dependence of the D0, D+, and D*+ nuclear modification factors is also reported in the interval 1 < pT< 36 GeV/c as a function of the collision centrality, and the central-to-peripheral ratios are computed from the D-meson yields measured in different centrality classes. The results are further compared with charged-particle measurements and a similar trend is observed in all the centrality classes. The ratios of the pT-differential cross sections of D0, D+, D*+, and DS+ mesons are also reported. The DS+ and D+ yields are compared as a function of the charged-particle multiplicity for several pT intervals. No modification in the relative abundances of the four species is observed with respect to pp collisions within the statistical and systematic uncertainties. [Figure not available: see fulltext.]
Recommended from our members
Measurement of electrons from heavy-flavour hadron decays as a function of multiplicity in p-Pb collisions at √sNN = 5.02 TeV
The multiplicity dependence of electron production from heavy-flavour hadron decays as a function of transverse momentum was measured in p-Pb collisions at sNN = 5.02 TeV using the ALICE detector at the LHC. The measurement was performed in the centre-of-mass rapidity interval −1.07 < ycms< 0.14 and transverse momentum interval 2 < pT< 16 GeV/c. The multiplicity dependence of the production of electrons from heavy-flavour hadron decays was studied by comparing the pT spectra measured for different multiplicity classes with those measured in pp collisions (QpPb) and in peripheral p-Pb collisions (Qcp). The QpPb results obtained are consistent with unity within uncertainties in the measured pT interval and event classes. This indicates that heavy-flavour decay electron production is consistent with binary scaling and independent of the geometry of the collision system. Additionally, the results suggest that cold nuclear matter effects are negligible within uncertainties, in the production of heavy-flavour decay electrons at midrapidity in p-Pb collisions. [Figure not available: see fulltext.
High-Risk Cervical Human Papillomavirus Infections among Human Immunodeficiency Virus-Positive Women in the Bahamas
Background\ud
\ud
High-risk (HR) HPV genotypes other than 16 and 18 have been detected in a significant proportion of immunocompromised females. We aim to evaluate the frequency of HR HPV genotypes in a population of HIV-positive Caribbean women.\ud
Methods\ud
\ud
One hundred sixty-seven consecutive, non-pregnant, HIV-positive females ≥18 years were recruited in this study. Each participant received a vaginal examination, PAP smear, and completed a questionnaire. DNA was extracted for HPV testing in 86 patients.\ud
Results\ud
\ud
Mean age was 39.1 years for women positive for HR HPV and 43.1 years for women negative for HR HPV (P value = 0.040). 78% (130/167) of the women had HR HPV infections; the prevalence of abnormal cervical cytology was 38% among women who were HR HPV-positive compared to women who were HR HPV-negative (22%). Fifty-one percent of the 86 women with available genotype carried infections with HPV 16 and/or HPV 18; genotypes of unknown risk were also frequently observed. Women who had a CD4+ count of ≤200 had 7 times increased odds of carrying HR HPV infection in comparison to women with CD4+>200.\ud
Conclusions\ud
\ud
HR HPV infections in HIV infected females may consist of more than just HPV 16 and 18, but also HPV 52 and 58. Further studies are needed to determine whether HPV 52 and 58 play a significant role in the development of cervical cytological abnormalities in HIV+ women
Gauge invariant definition of the jet quenching parameter
In the framework of Soft-Collinear Effective Theory, the jet quenching
parameter, , has been evaluated by adding the effect of Glauber gluon
interactions to the propagation of a highly-energetic collinear parton in a
medium. The result, which holds in covariant gauges, has been expressed in
terms of the expectation value of two Wilson lines stretching along the
direction of the four-momentum of the parton. In this paper, we show how that
expression can be generalized to an arbitrary gauge by the addition of
transverse Wilson lines. The transverse Wilson lines are explicitly computed by
resumming interactions of the parton with Glauber gluons that appear only in
non-covariant gauges. As an application of our result, we discuss the
contribution to coming from transverse momenta of order in a
medium that is a weakly-coupled quark-gluon plasma.Comment: 31 pages, 7 figures; journal versio
Magnetism, FeS colloids, and Origins of Life
A number of features of living systems: reversible interactions and weak
bonds underlying motor-dynamics; gel-sol transitions; cellular connected
fractal organization; asymmetry in interactions and organization; quantum
coherent phenomena; to name some, can have a natural accounting via
interactions, which we therefore seek to incorporate by expanding the horizons
of `chemistry-only' approaches to the origins of life. It is suggested that the
magnetic 'face' of the minerals from the inorganic world, recognized to have
played a pivotal role in initiating Life, may throw light on some of these
issues. A magnetic environment in the form of rocks in the Hadean Ocean could
have enabled the accretion and therefore an ordered confinement of
super-paramagnetic colloids within a structured phase. A moderate H-field can
help magnetic nano-particles to not only overcome thermal fluctuations but also
harness them. Such controlled dynamics brings in the possibility of accessing
quantum effects, which together with frustrations in magnetic ordering and
hysteresis (a natural mechanism for a primitive memory) could throw light on
the birth of biological information which, as Abel argues, requires a
combination of order and complexity. This scenario gains strength from
observations of scale-free framboidal forms of the greigite mineral, with a
magnetic basis of assembly. And greigite's metabolic potential plays a key role
in the mound scenario of Russell and coworkers-an expansion of which is
suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed
Krishnaswami Alladi, Springer 201
- …
